Naive Bayes classifier
Probabilistic classification algorithm / From Wikipedia, the free encyclopedia
Dear Wikiwand AI, let's keep it short, summarize this topic like I'm... Ten years old or a College student
In statistics, naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features (see Bayes classifier). They are among the simplest Bayesian network models,[1] but coupled with kernel density estimation, they can achieve high accuracy levels.[2]
Part of a series on |
Bayesian statistics |
---|
![]() |
Posterior = Likelihood × Prior ÷ Evidence |
Background |
Model building |
Posterior approximation |
Estimators |
Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features/predictors) in a learning problem. Maximum-likelihood training can be done by evaluating a closed-form expression,[3]: 718 which takes linear time, rather than by expensive iterative approximation as used for many other types of classifiers.
In the statistics literature, naive Bayes models are known under a variety of names, including simple Bayes and independence Bayes.[4] All these names reference the use of Bayes' theorem in the classifier's decision rule, but naive Bayes is not (necessarily) a Bayesian method.[3][4]