Neodymium

Chemical element, symbol Nd and atomic number 60 / From Wikipedia, the free encyclopedia

Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Neodymium?

Summarize this article for a 10 year old

SHOW ALL QUESTIONS

Neodymium is a chemical element; it has symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarnishes in air and moisture. When oxidized, neodymium reacts quickly producing pink, purple/blue and yellow compounds in the +2, +3 and +4 oxidation states. It is generally regarded as having one of the most complex spectra of the elements.[6] Neodymium was discovered in 1885 by the Austrian chemist Carl Auer von Welsbach, who also discovered praseodymium. It is present in significant quantities in the minerals monazite and bastnäsite. Neodymium is not found naturally in metallic form or unmixed with other lanthanides, and it is usually refined for general use. Neodymium is fairly common—about as common as cobalt, nickel, or copper and is widely distributed in the Earth's crust.[7] Most of the world's commercial neodymium is mined in China, as is the case with many other rare-earth metals.

Quick facts: Neodymium, Pronunciation, Appearance, Standar...
Neodymium, 60Nd
Neodymium2.jpg
Neodymium
Pronunciation/ˌnˈdɪmiəm/ (NEE-oh-DIM-ee-əm)
Appearancesilvery white
Standard atomic weight Ar°(Nd)
  • 144.242±0.003
  • 144.24±0.01 (abridged)[1]
Neodymium in the periodic table


Nd

U
praseodymiumneodymiumpromethium
Atomic number (Z)60
Groupf-block groups (no number)
Periodperiod 6
Block  f-block
Electron configuration[Xe] 4f4 6s2
Electrons per shell2, 8, 18, 22, 8, 2
Physical properties
Phase at STPsolid
Melting point1297 K (1024 °C, 1875 °F)
Boiling point3347 K (3074 °C, 5565 °F)
Density (near r.t.)7.01 g/cm3
when liquid (at m.p.)6.89 g/cm3
Heat of fusion7.14 kJ/mol
Heat of vaporization289 kJ/mol
Molar heat capacity27.45 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1595 1774 1998 (2296) (2715) (3336)
Atomic properties
Oxidation states0,[2] +2, +3, +4 (a mildly basic oxide)
ElectronegativityPauling scale: 1.14
Ionization energies
  • 1st: 533.1 kJ/mol
  • 2nd: 1040 kJ/mol
  • 3rd: 2130 kJ/mol
Atomic radiusempirical: 181 pm
Covalent radius201±6 pm
Color lines in a spectral range
Spectral lines of neodymium
Other properties
Natural occurrenceprimordial
Crystal structure double hexagonal close-packed (dhcp)
Double hexagonal close packed crystal structure for neodymium
Speed of sound thin rod2330 m/s (at 20 °C)
Thermal expansionα, poly: 9.6 µm/(m⋅K) (at r.t.)
Thermal conductivity16.5 W/(m⋅K)
Electrical resistivityα, poly: 643 nΩ⋅m
Magnetic orderingparamagnetic, antiferromagnetic below 20 K[3]
Molar magnetic susceptibility+5628.0×10−6 cm3/mol (287.7 K)[4]
Young's modulusα form: 41.4 GPa
Shear modulusα form: 16.3 GPa
Bulk modulusα form: 31.8 GPa
Poisson ratioα form: 0.281
Vickers hardness345–745 MPa
Brinell hardness265–700 MPa
CAS Number7440-00-8
History
DiscoveryCarl Gustaf Mosander (1841)
First isolationCarl Auer von Welsbach (1885)
Named byCarl Auer von Welsbach (1885)
Isotopes of neodymium
Main isotopes[5] Decay
abun­dance half-life (t1/2) mode pro­duct
142Nd 27.2% stable
143Nd 12.2% stable
144Nd 23.8% 2.29×1015 y α 140Ce
145Nd 8.3% stable
146Nd 17.2% stable
148Nd 5.80% stable
150Nd 5.60% 6.7×1018 y ββ 150Sm
Symbol_category_class.svg Category: Neodymium
| references
Close

Neodymium compounds were first commercially used as glass dyes in 1927 and remain a popular additive. The color of neodymium compounds comes from the Nd3+ ion and is often a reddish-purple. However, this changes with the type of lighting because of the interaction of the sharp light absorption bands of neodymium with ambient light enriched with the sharp visible emission bands of mercury, trivalent europium or terbium. Neodymium-doped glasses are used in lasers that emit infrared with wavelengths between 1047 and 1062 nanometers. These lasers have been used in extremely high-power applications, such as experiments in inertial confinement fusion. Neodymium is also used with various other substrate crystals, such as yttrium aluminium garnet in the Nd:YAG laser.

Neodymium alloys are used to make high-strength neodymium magnets, a powerful permanent magnet.[8] These magnets are widely used in products like microphones, professional loudspeakers, in-ear headphones, high-performance hobby DC electric motors, and computer hard disks, where low magnet mass (or volume) or strong magnetic fields are required. Larger neodymium magnets are used in electric motors with a high power-to-weight ratio (e.g., in hybrid cars) and generators (e.g., aircraft and wind turbine electric generators).[9]

Oops something went wrong: