Top Qs
Timeline
Chat
Perspective
1 32 polytope
Uniform polytope From Wikipedia, the free encyclopedia
Remove ads
In 7-dimensional geometry, 132 is a uniform polytope, constructed from the E7 group.
Its Coxeter symbol is 132, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 1-node sequences.
The rectified 132 is constructed by points at the mid-edges of the 132.
These polytopes are part of a family of 127 (27-1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .
Remove ads
1 32 polytope
Summarize
Perspective
132 | |
---|---|
Type | Uniform 7-polytope |
Family | 1k2 polytope |
Schläfli symbol | {3,33,2} |
Coxeter symbol | 132 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | 182: 56 122 ![]() 126 131 ![]() |
5-faces | 4284: 756 121 ![]() 1512 121 ![]() 2016 {34} ![]() |
4-faces | 23688: 4032 {33} ![]() 7560 111 ![]() 12096 {33} ![]() |
Cells | 50400: 20160 {32} ![]() 30240 {32} ![]() |
Faces | 40320 {3}![]() |
Edges | 10080 |
Vertices | 576 |
Vertex figure | t2{35} ![]() |
Petrie polygon | Octadecagon |
Coxeter group | E7, [33,2,1], order 2903040 |
Properties | convex |
This polytope can tessellate 7-dimensional space, with symbol 133, and Coxeter-Dynkin diagram, . It is the Voronoi cell of the dual E7* lattice.[1]
Alternate names
- Emanuel Lodewijk Elte named it V576 (for its 576 vertices) in his 1912 listing of semiregular polytopes.[2]
- Coxeter called it 132 for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node branch.
- Pentacontihexa-hecatonicosihexa-exon (Acronym lin) - 56-126 facetted polyexon (Jonathan Bowers)[3]
Images
Construction
It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram,
Removing the node on the end of the 2-length branch leaves the 6-demicube, 131,
Removing the node on the end of the 3-length branch leaves the 122,
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 6-simplex, 032,
Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.[4]
Related polytopes and honeycombs
The 132 is third in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. The next figure is the Euclidean honeycomb 133 and the final is a noncompact hyperbolic honeycomb, 134.
Remove ads
Rectified 1 32 polytope
Summarize
Perspective
The rectified 132 (also called 0321) is a rectification of the 132 polytope, creating new vertices on the center of edge of the 132. Its vertex figure is a duoprism prism, the product of a regular tetrahedra and triangle, doubled into a prism: {3,3}×{3}×{}.
Alternate names
- Rectified pentacontihexa-hecatonicosihexa-exon for rectified 56-126 facetted polyexon (acronym rolin) (Jonathan Bowers)[5]
Construction
It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space. These mirrors are represented by its Coxeter-Dynkin diagram, , and the ring represents the position of the active mirror(s).
Removing the node on the end of the 3-length branch leaves the rectified 122 polytope,
Removing the node on the end of the 2-length branch leaves the demihexeract, 131,
Removing the node on the end of the 1-length branch leaves the birectified 6-simplex,
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the tetrahedron-triangle duoprism prism, {3,3}×{3}×{},
Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.[4]
Images
Remove ads
See also
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads