Top Qs
Timeline
Chat
Perspective
2025 in paleobotany
Overview of the events of 2025 in paleobotany From Wikipedia, the free encyclopedia
Remove ads
This paleobotany list records new fossil plant taxa that were to be described during the year 2025, as well as notes other significant paleobotany discoveries and events which occurred during 2025.
Remove ads
Remove ads
Algae
Summarize
Perspective
Charophytes
Chlorophytes
Rhodophytes
Phycological research
- A study on the reproduction of Eugonophyllum, based on fossils from the Carboniferous (Gzhelian) Maping Formation (Guizhou, China), is published by Wang et al. (2025).[6]
Remove ads
Non-vascular plants
Summarize
Perspective
Bryophyta
Marchantiophyta
Non-vascular plant research
- Evidence of impact of socio-economic and language factors on the documentation of bryophyte fossil record is presented by Blanco-Moreno, Bippus & Tomescu (2025).[11]
Remove ads
Lycophytes
Ferns and fern allies
Remove ads
Conifers
Summarize
Perspective
Cheirolepidiaceae
Cupressaceae
Pinaceae
Podocarpaceae
Remove ads
Gnetophyta
Flowering plants
Summarize
Perspective
Magnoliids
Magnoliid research
- Beurel et al. (2025) study the phylogenetic affinities of Nothophylica piloburmensis, and recover it as a member of Laurales related to the families Lauraceae and Hernandiaceae.[33]
Monocots
Alismatales
Arecales
Liliales
Poales
Monocot research
- Khan et al. (2025) describe fossil material of palms with one metaxylem vessel in each fibrovascular bundle from the Maastrichtian-Danian Deccan Intertrappean Beds (India), and interpret the studied fossils as Cocos-type palms belonging to the subfamily Arecoideae that likely grew in a tropical rainforest.[38]
- Evidence from the study of phytoliths from the Giraffe locality (Northwest Territories, Canada), indicative of presence of palms close to the Arctic Circle over an extensive period of time during the Eocene (approximately 48 million years ago), is presented by Siver et al. (2025).[39]
Basal eudicots
Superasterids
Apiales
Ericales
Icacinales
Superrosids
Fabales
Fagales
Sapindales
Superrosid research
- Hazra & Khan (2025) report the discovery of a diverse assemblage of legume fruits and leaflet remains from the Rajdanda Formation (India), interpreted as evidence of the presence of a warm and humid tropical environment during the Pliocene.[53]
- A study on the anatomy of wood of extant members of the genus Ficus and fossil wood with affinities to Ficus, and on its implications for determination of the organs preserved as fossil wood and their habits, is published by Monje Dussán, Pederneiras & Angyalossy (2025).[54]
- The first fossil material assigned to a living endangered tropical tree species (Dryobalanops rappa) is described from the Plio-Pleistocene strata from Brunei by Wang et al. (2025).[55]
Other angiosperms
General angiosperm research
- A study on the timing of the evolution of the flowering plants is published by Ma et al. (2025), who recover the crown group of the flowering plants as likely originating in the Triassic.[58]
- Clark & Donoghue (2025) study the impact of interpretations of the plant fossil record on molecular clock estimates of the timing of origin of the flowering plants, and estimate that the crown group of the flowering plants diverged in the Late Jurassic–Early Cretaceous interval.[59]
- Doughty et al. (2025) use a mechanistic model to study the relationship between seed size of flowering plants, their light environment and the size of animals in their environment, and predict a rapid increase of seed size during the Paleocene that eventually plateaued or declined, likely as a result of the appearance of large herbivores that opened the understory, reducing the competitive advantage of plants with large seeds.[60]
Remove ads
Other plants
Summarize
Perspective
Other plant research
- A study on the epidermal anatomy of Pterophyllum ptilum from the Upper Triassic Xujiahe Formation (China) is published by Lu et al. (2025).[71]
- Partial leaf representing the first record of a fossil Cycas from Australia is described from the Miocene Stuarts Creek site by Greenwood, Conran & West (2025).[72]
Remove ads
Palynology
Summarize
Perspective
Palynological research
- Nhamutole et al. (2025) study the composition of palynological assemblages from the Permian (Lopingian) strata of the Maniamba Basin (Mozambique), reporting evidence of the presence of plants indicative of lowland fluvial setting.[77]
- Evidence from the study of palynological assemblages from the South Chinese Meishan section, indicative of presence of persistent gymnosperm-dominated vegetation during the Permian-Triassic transition, is presented by Schneebeli-Hermann & Galasso (2025).[78]
- Evidence from the study of palynofloral assemblages from the Germig Section (Qinghai-Tibetan Plateau; Tibet, China), interpreted as indicative of a shift from floras dominated by seed ferns and conifers to floras dominated by cheirolepids during the Triassic-Jurassic transition, is presented by Li et al. (2025).[79]
- Description of the palynological assemblage from the Middle Jurassic Challacó Formation (Argentina), including a Mesozoic record of the otherwise Proterozoic to Paleozoic taxon Gloeocapsomorpha, is presented by Olivera et al. (2025).[80]
- Tricolpate pollen, identified as pollen of flowering plants belonging to the eudicot clade, is described from the Barremian strata from nearshore marine sediments in the Lusitanian Basin (Portugal) by Gravendyck et al. (2025).[81]
- A study on the composition of the gymnosperm-dominated palynoflora from the Lower Cretaceous strata from the Koonwarra fossil bed (Australia) is published by Vajda et al. (2025).[82]
- Evidence from the study of palynological assemblages from the Barremian–Aptian Gippsland Basin and the Albian Otway Basin (Victoria, Australia), indicative of a high-rainfall regime of a floral turnover in the studied resulting in different composition of the assemblages from the studied basins, is presented by Korasidis & Wagstaff (2025).[83]
- A study on palynofloral assemblages from the Las Loras UNESCO Global Geopark (Spain), providing evidence of gradual shift from conifer-dominated floras to ones with increased presence of flowering plants through the Albian–Cenomanian, is published by Rodríguez-Barreiro et al. (2025).[84]
- Evidence from the study of palynomorph and palynofacies from the Bahariya Formation (Egypt), interpreted as indicative of warm and humid climate during the early-middle Cenomanian with a short episode of semi-arid to arid conditions during the late early Cenomanian, is presented by Abdelhalim et al. (2025).[85]
- Evidence from the study of palynological assemblages from the Llanos basin (Colombia), indicative of impact of environmental changes on the diversification of Neotropical plants during the Cenozoic, is presented by de la Parra & Benson (2025).[86]
- Rull (2025) revises purported fossil pollen records of Pelliciera found outside the Neotropics, and argues that only a subset of Cenozoic pollen records from tropical West Africa can be confirmed as likely fossils of members of Pelliciera.[87]
- Revision of the fossil pollen of members of Fabales, Rosales, Fagales, Malpighiales, Myrtales, Sapindales, Malvales, Santalales and Caryophyllales from the palynological assemblage from the Eocene Messel Formation (Germany) is published by Bouchal et al. (2025).[88]
- Evidence from the study of fossil pollen from the Dingqinghu Formation (China), indicative of presence of a mixed deciduous and coniferous forest in the central Qinghai-Tibet Plateau during the Oligocene-Miocene transition, is presented by Xie et al. (2025).[89]
- A study on the environment and climate in Java (Indonesia) during the early Pleistocene, based on data from palynological assemblages from the Kalibiuk and Kaliglagah formations, is published by Morley & Morley (2025), who interpret the studied assemblages as indicative of a strongly seasonal climate, and interpret the assemblages from the Kalibuik Formation and the basal Kaliglagah Formation as indicative of presence of a large delta dominated by mangroves, while considering the assemblages from the upper Kaliglagah Formation to be consistent with the presence of a freshwater swamp.[90]
- Evidence from the study of pollen record from the eastern Mainland Southeast Asia, indicative of presence of forest-seasonal savanna mosaics in the studied region during the Last Glacial Maximum, is presented by Lin et al. (2025), who find no evidence of presence of savanna corridors linking the Leizhou Peninsula and Singapore during the Last Glacial Maximum.[91]
Remove ads
General research
- A study on the floral assemblage from the Permian strata of the East Bokaro Coalfield (India), providing evidence of the presence of a diverse ecosystem of large trees and shrubs, is published by Dash et al. (2025).[92]
- Ferraz et al. (2025) report the discovery of a diverse plant association in the Guadalupian strata from the Cerro Chato outcrop (Paraná Basin, Brazil).[93]
- Evidence of changes of composition of gigantopterid-dominated rainforests known from the Longtan Formation (China) during the Lopingian is presented by Shu et al. (2025), who also report evidence of the presence of climbing structures in Gigantonoclea.[94]
- Evidence from the study of fossil material from the South Taodonggou Section in the Turpan-Hami Basin (China), interpreted as indicative of presence of a refugium of land vegetation that preserved the stability of food chains during the Permian–Triassic extinction event and might have been one of the source regions for the diversification of terrestrial life in the aftermath of the extinction event, is presented by Peng et al. (2025).[95]
- Evidence of a staggered recovery of plant communities from the Sydney Basin (Australia) in the aftermath of the Permian–Triassic extinction event, indicative of the presence of a succession gymnosperm-dominated and lycophyte-dominated plant communities lasting until the early Middle Triassic, is presented by Amores et al. (2025).[96]
- A study on the composition of the Middle Jurassic plant assemblage from the Khamarkhoovor Formation (Mongolia) is published by Muraviev et al. (2025).[97]
- Evidence of the presence of a plant community dominated by ferns belonging to the family Osmundaceae, similar to extant plant communities such as those from swamp settings from the Parana Forest in northeastern Argentina, is reported from the Jurassic La Matilde Formation (Argentina) by García Massini et al. (2025).[98]
- Silva et al. (2025) study the taphonomy of exceptionally preserved plant remains from the Upper Cretaceous Santa Marta Formation (Antarctica).[99]
- Evidence from the study of phytoliths from the Lunpola Basin of the Qinghai–Tibetan Plateau, interpreted as indicative of presence mixed coniferous and broad-leaved forest during the late Oligocene–Early Miocene, is presented by Zhang et al. (2025).[100]
- A study on the timing of the uplift of the Lhasa and Qiangtang terranes, based on composition of fossil plant communities from the Qinghai–Tibet Plateau (China), is published by Lai et al. (2025).[101]
- Evidence indicating that climate and geographic changes in the Miocene resulted in vegetation changes that in turn caused climate change feedbacks that impacted cooling and precipitation changes during the late Miocene climate transition is presented by Zhang et al. (2025).[102]
- Evidence from the study of plant macrofossils and palynoflora from the Pisco Formation (Peru), indicative of presence of a diverse dry forest biome in the area of present-day coastal Peruvian desert during the Miocene, is presented by Ochoa et al. (2025).[103]
- A study on ancient DNA from sediment cores from lakes in Alaska and Siberia, providing evidence of plant extinctions associated with environmental changes during the Pleistocene–Holocene transition, is published by Courtin et al. (2025).[104]
- Evidence of changes of the upper range limit of trees in the Tibetan Plateau since the Last Glacial Maximum, and of a relationship between those changes and pattern of beta diversity of the studied flora, is presented Xu et al. (2025).[105]
- El-Saadawi et al. (2025) present an annotated catalog of plant macrofossil remains from Egypt, including fossils ranging from Devonian to Quaternary.[106]
Remove ads
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads