Top Qs
Timeline
Chat
Perspective
8-demicube
From Wikipedia, the free encyclopedia
Remove ads
In geometry, a demiocteract or 8-demicube is a uniform 8-polytope, constructed from the 8-hypercube, octeract, with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM8 for an 8-dimensional half measure polytope.
Coxeter named this polytope as 151 from its Coxeter diagram, with a ring on
one of the 1-length branches, and Schläfli symbol or {3,35,1}.
Acronym: hocto (Jonathan Bowers)[1]
Remove ads
Cartesian coordinates
Cartesian coordinates for the vertices of an 8-demicube centered at the origin are alternate halves of the 8-cube:
- (±1,±1,±1,±1,±1,±1,±1,±1)
with an odd number of plus signs.
Related polytopes and honeycombs
This polytope is the vertex figure for the uniform tessellation, 251 with Coxeter-Dynkin diagram:
Images
Notes
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads