Top Qs
Timeline
Chat
Perspective

A5 polytope

From Wikipedia, the free encyclopedia

A5 polytope
Remove ads

In 5-dimensional geometry, there are 19 uniform polytopes with A5 symmetry. There is one self-dual regular form, the 5-simplex with 6 vertices.

Orthographic projections
A5 Coxeter plane
Thumb
5-simplex

Each can be visualized as symmetric orthographic projections in the Coxeter planes of the A5 Coxeter group and other subgroups.

Graphs

Summarize
Perspective

Symmetric orthographic projections of these 19 polytopes can be made in the A5, A4, A3, A2 Coxeter planes. Ak graphs have [k+1] symmetry. For even k and symmetrically nodea_1ed-diagrams, symmetry doubles to [2(k+1)].

These 19 polytopes are each shown in these 4 symmetry planes, with vertices and edges drawn and vertices colored by the number of overlapping vertices in each projective position.

More information #, Coxeter plane graphs ...


A5 polytopes
Thumb
t0
Thumb
t1
Thumb
t2
Thumb
t0,1
Thumb
t0,2
Thumb
t1,2
Thumb
t0,3
Thumb
t1,3
Thumb
t0,4
Thumb
t0,1,2
Thumb
t0,1,3
Thumb
t0,2,3
Thumb
t1,2,3
Thumb
t0,1,4
Thumb
t0,2,4
Thumb
t0,1,2,3
Thumb
t0,1,2,4
Thumb
t0,1,3,4
Thumb
t0,1,2,3,4
Remove ads

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover, New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, and Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2, 10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
Remove ads

Notes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads