Top Qs
Timeline
Chat
Perspective

August 1962 lunar eclipse

Penumbral lunar eclipse August 15, 1962 From Wikipedia, the free encyclopedia

August 1962 lunar eclipse
Remove ads

A penumbral lunar eclipse occurred at the Moon’s descending node of orbit on Wednesday, August 15, 1962,[1] with an umbral magnitude of −0.3615. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 1.6 days before perigee (on August 17, 1962, at 9:20 UTC), the Moon's apparent diameter was larger.[2]

Quick facts Date, Gamma ...
Remove ads

Visibility

The eclipse was completely visible over much of Africa, eastern Europe, most of Asia, western Australia, and Antarctica, seen rising over eastern South America, western Europe, and west Africa and setting over northeast Asia and eastern Australia.[3]

Thumb Thumb

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

More information July 17 Descending node (full moon), July 31Ascending node (new moon) ...
Summarize
Perspective

Eclipses in 1962

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 147

Inex

Triad

Lunar eclipses of 1962–1965

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The lunar eclipses on May 3, 1958 (partial) and October 28, 1958 (penumbral) occur in the previous lunar year eclipse set, and the penumbral lunar eclipse on July 17, 1962 occurs in the next lunar year eclipse set.

More information Lunar eclipse series sets from 1958 to 1962, Ascending node ...

Saros 147

This eclipse is a part of Saros series 147, repeating every 18 years, 11 days, and containing 70 events. The series started with a penumbral lunar eclipse on July 2, 1890. It contains partial eclipses from September 28, 2034 through May 27, 2431; total eclipses from June 6, 2449 through October 5, 2647; and a second set of partial eclipses from October 16, 2665 through May 1, 2990. The series ends at member 70 as a penumbral eclipse on July 28, 3145.

The longest duration of totality will be produced by member 37 at 105 minutes, 18 seconds on August 1, 2539. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 1–18 occur between 1890 and 2200: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2060 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 154.

August 9, 1953 August 20, 1971
Thumb Thumb
Remove ads

See also

Notes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads