Top Qs
Timeline
Chat
Perspective
June 1984 lunar eclipse
Penumbral lunar eclipse June 13, 1984 From Wikipedia, the free encyclopedia
Remove ads
A penumbral lunar eclipse occurred at the Moon’s descending node of orbit on Wednesday, June 13, 1984,[1] with an umbral magnitude of −0.9414. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 6.1 days after perigee (on June 7, 1984, at 12:25 UTC), the Moon's apparent diameter was larger.[2]
This minor penumbral eclipse was visually imperceptible, but marked the first lunar eclipse in Lunar Saros 149.[3]
Remove ads
Visibility
The eclipse was completely visible over the eastern half of Asia, Australia, and Antarctica, seen rising over Madagascar and central Asia and setting over the eastern Pacific Ocean.[4]
![]() ![]() |
Eclipse details
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[5]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Related eclipses
Summarize
Perspective
Eclipses in 1984
- A penumbral lunar eclipse on May 15.
- An annular solar eclipse on May 30.
- A penumbral lunar eclipse on June 13.
- A penumbral lunar eclipse on November 8.
- A total solar eclipse on November 22.
Metonic
- Preceded by: Lunar eclipse of August 26, 1980
Tzolkinex
- Followed by: Lunar eclipse of July 26, 1991
Tritos
- Preceded by: Lunar eclipse of July 15, 1973
Lunar Saros 149
- Followed by: Lunar eclipse of June 24, 2002
Inex
- Followed by: Lunar eclipse of May 25, 2013
Triad
- Preceded by: Lunar eclipse of August 12, 1897
Lunar eclipses of 1980–1984
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]
The penumbral lunar eclipses on March 1, 1980 and August 26, 1980 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on May 15, 1984 and November 8, 1984 occur in the next lunar year eclipse set.
Saros 149
This eclipse is a part of Saros series 149, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on June 13, 1984. It contains partial eclipses from August 29, 2110 through April 5, 2471; total eclipses from April 16, 2489 through September 17, 2741; and a second set of partial eclipses from September 28, 2759 through May 5, 3120. The series ends at member 71 as a penumbral eclipse on July 20, 3246.
The longest duration of totality will be produced by member 36 at 99 minutes, 18 seconds on July 3, 2615. All eclipses in this series occur at the Moon’s descending node of orbit.[7]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
See also
Notes
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads