Top Qs
Timeline
Chat
Perspective

Banach bundle (non-commutative geometry)

From Wikipedia, the free encyclopedia

Remove ads

In mathematics, a Banach bundle is a fiber bundle over a topological Hausdorff space, such that each fiber has the structure of a Banach space.

Definition

Let be a topological Hausdorff space, a (continuous) Banach bundle over is a tuple , where is a topological Hausdorff space, and is a continuous, open surjection, such that each fiber is a Banach space. Which satisfies the following conditions:

  1. The map is continuous for all
  2. The operation is continuous
  3. For every , the map is continuous
  4. If , and is a net in , such that and , then , where denotes the zero of the fiber .[1]

If the map is only upper semi-continuous, is called upper semi-continuous bundle.

Remove ads

Examples

Trivial bundle

Let A be a Banach space, X be a topological Hausdorff space. Define and by . Then is a Banach bundle, called the trivial bundle

Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads