Blake canonical form

Standard form of Boolean function From Wikipedia, the free encyclopedia

Blake canonical form

In Boolean logic, a formula for a Boolean function f is in Blake canonical form (BCF),[1] also called the complete sum of prime implicants,[2] the complete sum,[3] or the disjunctive prime form,[4] when it is a disjunction of all the prime implicants of f.[1]

Thumb
Karnaugh map of AB + BC + AC, a sum of all prime implicants (each rendered in a different color). Deleting AC results in a minimal sum.
Thumb
ABD + ABC + ABD + ABC
Thumb
ACD + BCD + ACD + BCD
Boolean function with two different minimal forms. The Blake canonical form is the sum of the two.

Relation to other forms

The Blake canonical form is a special case of disjunctive normal form.

The Blake canonical form is not necessarily minimal (upper diagram), however all the terms of a minimal sum are contained in the Blake canonical form.[3] On the other hand, the Blake canonical form is a canonical form, that is, it is unique up to reordering, whereas there can be multiple minimal forms (lower diagram). Selecting a minimal sum from a Blake canonical form amounts in general to solving the set cover problem,[5] so is NP-hard.[6][7]

History

Archie Blake presented his canonical form at a meeting of the American Mathematical Society in 1932,[8] and in his 1937 dissertation. He called it the "simplified canonical form";[9][10][11][12] it was named the "Blake canonical form" by Frank Markham Brown [d] and Sergiu Rudeanu [d] in 1986–1990.[13][1] Together with Platon Poretsky's work[14] it is also referred to as "Blake–Poretsky laws".[15][clarification needed]

Methods for calculation

Blake discussed three methods for calculating the canonical form: exhaustion of implicants, iterated consensus, and multiplication. The iterated consensus method was rediscovered[1] by Edward W. Samson and Burton E. Mills,[16] Willard Quine,[17] and Kurt Bing.[18][19] In 2022, Milan Mossé, Harry Sha, and Li-Yang Tan discovered a near-optimal algorithm for computing the Blake canonical form of a formula in conjunctive normal form.[20]

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.