Top Qs
Timeline
Chat
Perspective
Cantic order-4 hexagonal tiling
Uniform tiling of the hyperbolic plane From Wikipedia, the free encyclopedia
Remove ads
In geometry, the cantic order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{(4,4,3)} or h2{6,4}.
Cantic order-4 hexagonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 3.8.4.8 |
Schläfli symbol | t0,1(4,4,3) |
Wythoff symbol | 4 4 | 3 |
Coxeter diagram | ![]() ![]() ![]() |
Symmetry group | [(4,4,3)], (*443) |
Dual | Order-4-4-3 t01 dual tiling |
Properties | Vertex-transitive |
Remove ads
Related polyhedra and tiling
Remove ads
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
Wikimedia Commons has media related to Uniform tiling 3-8-4-8.
External links
- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery Archived 2013-03-24 at the Wayback Machine
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads