Top Qs
Timeline
Chat
Perspective

Cantic order-4 hexagonal tiling

Uniform tiling of the hyperbolic plane From Wikipedia, the free encyclopedia

Cantic order-4 hexagonal tiling
Remove ads

In geometry, the cantic order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{(4,4,3)} or h2{6,4}.

Cantic order-4 hexagonal tiling
Thumb
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration3.8.4.8
Schläfli symbolt0,1(4,4,3)
Wythoff symbol4 4 | 3
Coxeter diagram
Symmetry group[(4,4,3)], (*443)
DualOrder-4-4-3 t01 dual tiling
PropertiesVertex-transitive
Remove ads
More information Symmetry: [(4,4,3)] (*443), [(4,4,3)]+ (443) ...
Remove ads

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also


Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads