Top Qs
Timeline
Chat
Perspective

Cartesian monoidal category

Type of category in category theory From Wikipedia, the free encyclopedia

Remove ads

In mathematics, specifically in the field known as category theory, a monoidal category where the monoidal ("tensor") product is the categorical product is called a cartesian monoidal category. Any category with finite products (a "finite product category") can be thought of as a cartesian monoidal category. In any cartesian monoidal category, the terminal object is the monoidal unit. Dually, a monoidal finite coproduct category with the monoidal structure given by the coproduct and unit the initial object is called a cocartesian monoidal category, and any finite coproduct category can be thought of as a cocartesian monoidal category.

Cartesian categories with an internal Hom functor that is an adjoint functor to the product are called Cartesian closed categories.[1]

Remove ads

Properties

Cartesian monoidal categories have a number of special and important properties, such as the existence of diagonal maps Δx : x  x  x and augmentations ex : x  I for any object x. In applications to computer science we can think of Δ as "duplicating data" and e as "deleting data". These maps make any object into a comonoid. In fact, any object in a cartesian monoidal category becomes a comonoid in a unique way.

Remove ads

Examples

Summarize
Perspective

Cartesian monoidal categories:

Cocartesian monoidal categories:

In each of these categories of modules equipped with a cocartesian monoidal structure, finite products and coproducts coincide (in the sense that the product and coproduct of finitely many objects are isomorphic). Or more formally, if f : X1 ∐ ... ∐ Xn X1 × ... × Xn is the "canonical" map from the n-ary coproduct of objects Xj to their product, for a natural number n, in the event that the map f is an isomorphism, we say that a biproduct for the objects Xj is an object isomorphic to and together with maps ij : Xj  X and pj : X  Xj such that the pair (X, {ij}) is a coproduct diagram for the objects Xj and the pair (X, {pj}) is a product diagram for the objects Xj , and where pj  ij = idXj. If, in addition, the category in question has a zero object, so that for any objects A and B there is a unique map 0A,B : A  0  B, it often follows that pk  ij = : δij, the Kronecker delta, where we interpret 0 and 1 as the 0 maps and identity maps of the objects Xj and Xk, respectively. See pre-additive category for more.

Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads