Top Qs
Timeline
Chat
Perspective

Chordin-like 1

Protein-coding gene in humans From Wikipedia, the free encyclopedia

Chordin-like 1
Remove ads

Chordin-like 1 is a protein that in humans is encoded by the CHRDL1 gene.[5] Chordin-Like 1 (CHRDL1) is a structural glycoprotein that sits on the X chromosome and specifically encodes Venotropin, which is an antagonistic protein to bone morphogenic protein 4.[6]

Quick Facts CHRDL1, Identifiers ...
Remove ads
Remove ads

Function

This gene encodes an antagonist of bone morphogenetic protein 4. The encoded protein may play a role in topographic retinotectal projection and in the regulation of retinal angiogenesis in response to hypoxia. Alternatively spliced transcript variants encoding different isoforms have been described.[5]

CHRDL1 plays important roles in processes such as embryonic cell differentiation, osteogenesis, neurogenesis, tumor and metastasis suppression, and retinal formation.[7][8] The highest expression of this gene is found in the anterior eye segment and retina as well as in the cerebellum and neocortex.[6] In the neocortex, it peaks at the time of synapse maturation to allow for proper synaptic formation.[9] Therefore, this gene is important in proper formation of the central nervous system and the eyes.

Remove ads

Clinical significance

Mutations in CHRDL1 are associated to Neuhäuser Syndrome, X-linked megalocornea and central corneal thickness.[10]

Mutations in this gene may cause a variety of effects on the aforementioned processes. One potential outcome of a CHRDL1 mutation is non-syndromic X-linked megalocornea (XMC) that results from either a missense, nonsense, or frameshift mutation of the gene.[6] XMC is an enlargement of the anterior segments of the eye that may lead to other issues such as cataracts and glaucoma.[6] Another potential outcome is carcinogenic formation. Since CHRDL1 is a tumor and metastasis suppressor, a mutation in this gene may lead to tumor cell formation.[8] The most major effect a mutation could have is on synaptic stabilization. Since the gene limits synaptic plasticity, a mutation may cause issues in proper synapse maturation, leading to a variety of neurological disorders.[9] There is currently a knockout model for this gene that shows disruption may cause altered synaptic events and reduced synaptic GluA2 AMPARs leading to increased plasticity.[9]

Remove ads

References

Further reading

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads