Top Qs
Timeline
Chat
Perspective

Closed convex function

Terms in Maths From Wikipedia, the free encyclopedia

Remove ads
Remove ads

In mathematics, a function is said to be closed if for each , the sublevel set is a closed set.

Equivalently, if the epigraph defined by is closed, then the function is closed.

This definition is valid for any function, but most used for convex functions. A proper convex function is closed if and only if it is lower semi-continuous.[1]

Remove ads

Properties

  • If is a continuous function and is closed, then is closed.
  • If is a continuous function and is open, then is closed if and only if it converges to along every sequence converging to a boundary point of .[2]
  • A closed proper convex function f is the pointwise supremum of the collection of all affine functions h such that hf (called the affine minorants of f).
Remove ads

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads