Top Qs
Timeline
Chat
Perspective
List of AMD graphics processing units
From Wikipedia, the free encyclopedia
Remove ads
The following is a list that contains general information about GPUs and video cards made by AMD, including those made by ATI Technologies before 2006, based on official specifications in table-form.
Field explanations
Summarize
Perspective
The headers in the table listed below describe the following:
- Model – The marketing name for the GPU assigned by AMD/ATI. Note that ATI trademarks have been replaced by AMD trademarks starting with the Radeon HD 6000 series for desktop and AMD FirePro series for professional graphics.
- Codename – The internal engineering codename for the GPU.
- Launch – Date of release for the GPU.
- Architecture – The microarchitecture used by the GPU.
- Fab – Fabrication process. Average feature size of components of the GPU.
- Transistors – Number of transistors on the die.
- Die size – Physical surface area of the die.
- Core config – The layout of the graphics pipeline, in terms of functional units.
- Core clock – The reference base and boost (if available) core clock frequency.
- Fillrate
- Pixel - The rate at which pixels can be rendered by the raster operators to a display. Measured in pixels/s.
- Texture - The rate at which textures can be mapped by the texture mapping units onto a polygon mesh. Measured in texels/s.
- Performance
- Shader operations - How many operations the pixel shaders (or unified shaders in Direct3D 10 and newer GPUs) can perform. Measured in operations/s.
- Vertex operations - The amount of geometry operations that can be processed on the vertex shaders in one second (only applies to Direct3D 9.0c and older GPUs). Measured in vertices/s.
- Memory
- Bus type – Type of memory bus utilized.
- Bus width – Maximum bit width of the memory bus utilized.
- Size – Size of the graphics memory.
- Clock – The reference memory clock frequency.
- Bandwidth – Maximum theoretical memory bandwidth based on bus type and width.
- TDP (Thermal design power) – Maximum amount of heat generated by the GPU chip, measured in Watt.
- TBP (Typical board power) – Typical power drawn by the total board, including power for the GPU chip and peripheral equipment, such as Voltage regulator module, memory, fans, etc., measured in Watt.
- Bus interface – Bus by which the graphics processor is attached to the system (typically an expansion slot, such as PCI, AGP, or PCIe).
- API support – Rendering and computing APIs supported by the GPU and driver.
Due to conventions changing over time, some numerical definitions such as core config, core clock, performance and memory should not be compared one-to-one across generations. The following tables are for reference use only, and do not reflect actual performance.
Remove ads
Video codec acceleration
- R100 – Video Immersion
- R200 – Video Immersion II
- R300 – Video Immersion II + Video Shader
- R410 – Video Shader HD
- R420 – Video Shader HD + DXVA
- R520 – Avivo Video
- R600 – Avivo HD – UVD 1.0
- R700 – UVD 2, UVD 2.2
- Evergreen – UVD 2.2
- Northern Islands – UVD 3 (HD 67xx UVD 2.2)
- Southern Islands – UVD 3.1, VCE 1.0
- Sea Islands – UVD 4.2, VCE 2.0
- Volcanic Islands – UVD 5.0, 6.0, VCE 3.0
- Arctic Islands – UVD 6.3, VCE 3.4
- Vega – UVD 7.0, VCE 4.0 and VCN 1.0 only at AMD Raven Ridge
- Navi 1X – VCN 2.0
- Navi 2X – VCN 3.0
- Navi 3X – VCN 3.0
Remove ads
Features overview
Summarize
Perspective
The following table shows features of AMD/ATI's GPUs.
- The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
- R300, R400 and R500 based cards do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
- OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
- Vulkan support is theoretically possible but has not been implemented in a stable driver.
- The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
- Video processing for video frame rate interpolation technique. In Windows it works as a DirectShow filter in your player. In Linux, there is no support on the part of drivers and / or community.
- To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
- More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
- DRM (Direct Rendering Manager) is a component of the Linux kernel. AMDgpu is the Linux kernel module. Support in this table refers to the most current version.
Remove ads
API overview
Summarize
Perspective
The following table shows the graphics and compute APIs support across ATI/AMD GPU microarchitectures. Note that a branding series might include older generation chips.
- Radeon 7000 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
- These series do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power-of-two (NPOT) textures.
- OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
Remove ads
Desktop GPUs
Summarize
Perspective
Wonder series
Mach series
Rage series
1 Pixel pipelines : Vertex shaders : Texture mapping units : Render output units
2 OpenGL 1.0 (Generic 2D) is provided through software implementations.
Radeon R100 series
- All models include Direct3D 7.0 and OpenGL 1.3
- The R100 cards were originally launched without any numbering as Radeon SDR, DDR, LE and VE; these products were later "rebranded" to their names within the numbered naming scheme, when the Radeon 8000 series was introduced.
1 Pixel pipelines : Vertex shaders : Texture mapping units : Render output units
A First number indicates cards with 32 MB of memory. Second number indicates cards with 64 MB of memory.
B First number indicates OEM cards. Second number indicates Retail cards.
IGP (3xx series)
- All models are manufactured with a 180 nm fabrication process
- All models include Direct3D 7.0 and OpenGL 1.3
- Based on the Radeon VE
1 Pixel pipelines : Vertex shaders : Texture mapping units : Render output units
Radeon R200 series
- All models are manufactured with a 150 nm fabrication process
- All models include Direct3D 8.1 and OpenGL 1.4
1 Pixel shaders : Vertex shaders : Texture mapping units : Render output units
IGP (9000 series)
- All models are manufactured with a 150 nm fabrication process
- All models include Direct3D 8.1 and OpenGL 1.4
- Based on the Radeon 9200
1 Pixel shaders : Vertex shaders : Texture mapping units : Render output units
Radeon R300 series
AGP (9000 series, X1000 series)
- All models include Direct3D 9.0 and OpenGL 2.0
- All models use an AGP 8x interface
1 Pixel shaders : Vertex Shaders : Texture mapping units : Render output units
2 The 256-bit version of the 9800 SE when unlocked to 8-pixel pipelines with third party driver modifications should function close to a full 9800 Pro.[35]
PCIe (X3xx, X5xx, X6xx, X1000 series)
- All models include Direct3D 9.0 and OpenGL 2.0
- All models use a PCIe ×16 interface
1 Pixel shaders : Vertex Shaders : Texture mapping units : Render output units
IGP (X2xx, 11xx series)
- All models include Direct3D 9.0 and OpenGL 2.0
- Based on the Radeon X300
1Pixel shaders : Vertex Shaders : Texture mapping units : Render output units
Radeon R400 series
AGP (X7xx, X8xx)
1 Pixel shaders : Vertex shaders : Texture mapping units : Render output units
PCIe (X5xx, X7xx, X8xx, X1000 series)
1 Pixel shaders : Vertex Shaders : Texture mapping units : Render output units
IGP (X12xx, 21xx)
- All models include Direct3D 9.0b and OpenGL 2.0
- Based on Radeon X700
Radeon X1000 series
Note that ATI X1000 series cards (e.g. X1900) do not have Vertex Texture Fetch, hence they do not fully comply with the VS 3.0 model. Instead, they offer a feature called "Render to Vertex Buffer (R2VB)" that provides functionality that is an alternative Vertex Texture Fetch.
1 Pixel shaders : Vertex shaders : Texture mapping units : Render output units
Radeon HD 2000 series
Radeon HD 3000 series
IGP (HD 3000)
- All Radeon HD 3000 IGP models include Direct3D 10.0 and OpenGL 3.3
1 Unified shaders : Texture mapping units : Render output units
2 The clock frequencies may vary in different usage scenarios, as AMD PowerPlay technology is implemented. The clock frequencies listed here refer to the officially announced clock specifications.
3 The sideport is a dedicated memory bus. It is preferably used for a frame buffer.
All-in-Wonder series
1 Pixel shaders : Vertex shaders : Texture mapping units : Render output units
2 Unified shaders : Texture mapping units : Render output units
Radeon HD 4000 series
1 Unified shaders : Texture mapping units : Render output units
2 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
3 The TDP is reference design TDP values from AMD. Different non-reference board designs from vendors may lead to slight variations in actual TDP.
4 All models feature UVD2 and PowerPlay.
IGP (HD 4000)
- All Radeon HD 4000 IGP models include Direct3D 10.1 and OpenGL 2.0[37]
1 Unified shaders : Texture mapping units : Render output units
2 The clock frequencies may vary in different usage scenarios, as ATI PowerPlay technology is implemented. The clock frequencies listed here refer to the officially announced clock specifications.
3 The sideport is a dedicated memory bus. It preferably used for frame buffer.
Radeon HD 5000 series
- The HD5000 series is the last series of AMD GPUs which supports two analog CRT-monitors with a single graphics card (i.e. with two RAM-DACs).
- AMD Eyefinity introduced.
- The TDP is reference design TDP values from AMD. Different non-reference board designs from vendors may lead to slight variations in actual TDP.
- All chips feature AMD Eyefinity, but the Radeon HD 5870 Eyefinity Edition card also have six mini DisplayPort outputs, all of which can be simultaneously active.
Radeon HD 6000 series
• The Radeon HD 6000 series has a new tesselation engine which is said to double the performance when working with tesselation compared to the previous HD 5000 series.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
IGP (HD 6000)
- All models feature the UNB/MC Bus interface
- All models lack double-precision FP
- With driver Update OpenGL 4.4 available (Last Catalyst 15.12). OpenGL 4.5 available with Crimson Beta (driver version 15.30 or higher).
- All models feature Angle independent anisotropic filtering, UVD3, and AMD Eyefinity capabilities, with up to three outputs.
- All models feature 3D Blu-ray Disc acceleration.
- Embedded GPUs as part of AMD's Lynx platform APUs.
- TDP specified for AMD reference designs, includes CPU power consumption. Actual TDP of retail products may vary.
- A4-3300 series runs the Radeon HD 6410D at a speed of 443 MHz. Remaining A4 series run at 600 MHz.
Radeon HD 7000 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Lacks hardware video encoder
IGP (HD 7000)
- All models feature the UNB/MC Bus interface
- All models do not support double-precision FP
- TeraScale 2 (VLIW5) based APUs feature angle independent anisotropic filtering, UVD3, and Eyefinity capabilities, with up to three outputs.
- TeraScale 3 (VLIW4) based APUs feature angle independent anisotropic filtering, UVD3.2, and Eyefinity capabilities, with up to four outputs.
- TDP specified for AMD reference designs, includes CPU power consumption. Actual TDP of retail products may vary.
- Lacks hardware video encoder
Radeon HD 8000 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Lacks hardware video encoder
Radeon 200 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Lacks hardware video encoder
Radeon 300 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- The R9 380 utilizes loss-less color compression which can increase effective memory performance (relative to GCN 1st gen and 2nd gen cards) in certain situations.[citation needed]
Radeon 400 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- GlobalFoundries' 14 nm 14LPP FinFET process is second-sourced from Samsung Electronics.[89]
Radeon 500 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Lacks hardware video encoder and decoder
- GlobalFoundries' 14 nm 14LPP FinFET process is second-sourced from Samsung Electronics.[101]
- In October 2017 AMD branded an additional Polaris chip as "RX 560", although it features fewer shader and texture mapping units than the first released RX 560.
Radeon RX Vega series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- GlobalFoundries' 14 nm 14LPP FinFET process is second-sourced from Samsung Electronics.
Radeon VII series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon RX 5000 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon RX 6000 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Navi 24 lacks hardware video encoder.
- Actual release date unknown; RX 6300M release date is listed instead.
Radeon RX 7000 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Officially declared half-precision performance is twice of the one shown here due to being based on different operation (a×b+c×d+e).
Radeon RX 9000 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Officially declared half-precision performance is twice of the one shown here due to being based on different operation (a×b+c×d+e).
Remove ads
Mobile GPUs
Summarize
Perspective
These GPUs are either integrated into the mainboard or occupy a Mobile PCI Express Module (MXM).
Rage Mobility series
1 Vertex shaders : Pixel shaders : Texture mapping units : Render output units.
Mobility Radeon series
1 Vertex shaders : Pixel shaders : Texture mapping units : Render output units.
Mobility Radeon X300, X600, X700, X800 series
1 Vertex shaders : Pixel shaders : Texture mapping units : Render output units.
Mobility Radeon X1000 series
1 Vertex shaders : Pixel shaders : Texture mapping units : Render output units.
Mobility Radeon HD 2000 series
OpenGL 3.3 is possible with latest drivers for all RV6xx.
1 Vertex shaders : Pixel shaders : Texture mapping units : Render output units.
2 Unified Shaderss : Texture mapping units : Render output units
Mobility Radeon HD 3000 series
1 Unified Shaders : Texture mapping units : Render output units
Mobility Radeon HD 4000 series
1 Unified shaders : Texture mapping units : Render output units
2 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
Mobility Radeon HD 5000 series
1 Unified shaders : Texture mapping units : Render output units
2 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
Radeon HD 6000M series
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the core clock speed.
IGP (HD 6000)
- All models feature the UNB/MC Bus interface
- All models lack double-precision FP
- All models feature Angle independent anisotropic filtering, UVD3, and Eyefinity capabilities, with up to three outputs.
- Unified Shaders : Texture Mapping Units : Render Output Units : Compute units
- TDP specified for AMD reference designs, includes CPU power consumption. Actual TDP of retail products may vary.
IGP (HD 6000G)
- All models include Direct3D 11, OpenGL 4.4 and OpenCL 1.2
- All models feature the UNB/MC Bus interface
- All models lack double-precision FP
- All models feature angle independent anisotropic filtering, UVD3 and Eyefinity capabilities, with up to three outputs.
- All models feature VLIW5
1 Unified shaders : Texture mapping units : Render output units : Compute units
2 TDP specified for AMD reference designs, includes CPU power consumption. Actual TDP of retail products may vary.
Radeon HD 7000M series

- Lacks hardware video encoder
IGP (HD 7000G)
- Lacks hardware video encoder
Radeon HD 8000M series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon M200 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon M300 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon M400 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon M500 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon 600 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- GlobalFoundries' 14 nm 14LPP FinFET process is second-sourced from Samsung Electronics.[101]
Radeon RX 5000M series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon RX 6000M series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Lacks hardware video encoder.
Radeon RX 7000M series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- GPUs based on RDNA 3 have dual-issue stream processors so that up to two shader instructions can be executed per clock cycle under certain parallelism conditions.
- Officially declared half-precision performance is twice of the one shown here due to being based on different operation (a×b+c×d+e).
Remove ads
Workstation GPUs
Summarize
Perspective
FireGL series
1 Vertex shaders : Pixel shaders : Texture mapping units : Render output units
2 Unified shaders : Texture mapping units : Render output units : Compute Units
FireMV (Multi-View) series
1 Vertex shaders : Pixel shaders : Texture mapping unit : Render output units
2 Unified shaders : Texture mapping unit : Render output units
FirePro (Multi-View) series
FirePro 3D series (V000)
1 Unified shaders : Texture mapping units : Render output units : Compute Units
2 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory
3 Windows 7, 8.1, 10 Support for Fire Pro Cards with Terascale 2 and later by firepro driver 15.301.2601[338]
FirePro series (Vx900)
1 Unified shaders : Texture mapping units : Render output units : Compute Units
2 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
3 Support for Windows 7, 8.1 for OpenGL 4.4 and OpenCL 2.0, when Hardware is prepared with firepro driver 14.502.1045[343]
FirePro Workstation series (Wx000)
- Vulkan 1.0 and OpenGL 4.5 possible for GCN with Driver Update FirePro equal to Radeon Crimson 16.3 or higher.[344][345]
- Vulkan 1.1 possible for GCN with Radeon Pro Software 18.Q1.1 or higher. It might not fully apply to GCN 1.0 or 1.1 GPUs.[346]
1 Unified shaders : Texture mapping units : Render output units : Compute Units
2 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
3 OpenGL 4.4: support with AMD FirePro driver release 14.301.000 or later, in footnotes of specs[353]
FirePro D-Series
![]() | This section needs expansion. You can help by adding to it. (June 2019) |
In 2014, AMD released the D-Series specifically for Mac Pro workstations.[354]
1 Unified shaders : Texture mapping units : Render output units : compute units
FirePro Workstation series (Wx100)
- Vulkan 1.0 and OpenGL 4.5 possible for GCN with Driver Update FirePro equal to Radeon Crimson 16.3 or higher.[344][345] OpenCL 2.1 and 2.2 possible for all OpenCL 2.0-Cards with Driver Update in Future (Khronos). Linux Support for OpenCL is limited with AMDGPU Driver 16.60 actual to Version 1.2.[358]
- Vulkan 1.1 possible for GCN with Radeon Pro Software 18.Q1.1 or higher. It might not fully apply to GCN 1.0 or 1.1 GPUs.[346]
1 Unified shaders : Texture mapping units : Render output units : compute units
2 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
3 OpenGL 4.4: support with AMD FirePro driver release 14.301.000 or later, in footnotes of specs[353]
FirePro Workstation series (Wx300)
- Vulkan 1.1 possible for GCN with Radeon Pro Software 18.Q1.1 or higher. It might not fully apply to GCN 1.0 or 1.1 GPUs.[346]
Radeon PRO series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro WX x100 series
- Vulkan 1.1 possible for GCN with Radeon Pro software 18.Q1.1 or higher.[346]
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro WX x200 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro Vega series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro 5000 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro W5000 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro W6000 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro W7000 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- GPUs based on RDNA 3 have dual-issue stream processors so that up to two shader instructions can be executed per clock cycle under certain parallelism conditions.
Radeon Pro R9000 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Remove ads
Mobile workstation GPUs
Mobility FireGL series
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
FirePro Mobile series
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro WX x100 Mobile series
- Half precision power (FP16) is equal to single precision power (FP32) in 4th GCN generation (in 5th Gen: half precision (FP16) = 2× SP (FP32))
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units (TMUs) multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units (ROPs) multiplied by the base (or boost) core clock speed.
Radeon Pro 400 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro 500 series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro WX x200 Mobile series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
- Unified Shaders : Texture Mapping Units : Render Output Units : Compute Units
Radeon Pro Vega series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro 5000M series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro W5000M series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Pro W6000M series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Remove ads
Server GPUs
Summarize
Perspective
FireStream series
FirePro Remote series
1 Unified shaders : Texture mapping units : Render output units : compute units
2 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
FirePro Server series (S000x/Sxx 000)
- Vulkan 1.0 and OpenGL 4.5 possible for GCN with Driver Update FirePro equal to Radeon Crimson 16.3 or higher.[344] OpenGL 4.5 was only in Windows available.[345] Actual Linux Driver support OpenGL 4.5 and Vulkan 1.0, but only OpenCL 1.2 by AMDGPU Driver 16.60.[358]
- Vulkan 1.1 possible for GCN with Radeon Pro Software 18.Q1.1 or higher. It might not fully apply to GCN 1.0 or 1.1 GPUs.[346]
1 Unified shaders : Texture mapping units : Render output units: Compute units
2 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
3 OpenGL 4.4: support with AMD FirePro driver release 14.301.000 or later, in footnotes of specs[353]
Radeon Sky series
1 Unified shaders : Texture mapping units : Render output units : compute units
2 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
Radeon Pro V series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
Radeon Instinct series
- Boost values (if available) are stated below the base value in italic.
- Texture fillrate is calculated as the number of texture mapping units multiplied by the base (or boost) core clock speed.
- Pixel fillrate is calculated as the number of render output units multiplied by the base (or boost) core clock speed.
- GCD Refers to a Graphics Compute Die. Each GCD is a different piece of silicon.
- CDNA 2.0 Based cards adopt a design using two dies on the same package.They are linked with 400GB/s Bidirectional Infinity Fabric link, The dies are addressed as individual GPUs by the host system.
Remove ads
Embedded GPUs
1 Unified shaders : Texture mapping units : Render output units
2 CU = Compute units
3 The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
Remove ads
Console GPUs
Summarize
Perspective
1 Pixel shaders : Vertex shaders : Texture mapping units : Render output units
2 Unified shaders : Texture mapping units : Render output units
3 Unified shaders : Texture mapping units : Render output units : RT Cores
4 The Latte looks similar to the RV730 used in the Radeon HD4650/4670.[695]
5 In most cases, especially in games, half of this data can be considered.[696]
Remove ads
See also
- List of Nvidia graphics processing units
- List of Intel graphics processing units
- List of AMD processors with 3D graphics
- Apple M1
- Video Coding Engine, AMD's equivalent SIP core till 2017
- Video Core Next, AMD's video core which combines the functionality of Video Coding Engine and Unified Video Decoder
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads