Top Qs
Timeline
Chat
Perspective

8-demicubic honeycomb

From Wikipedia, the free encyclopedia

Remove ads
Remove ads

The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.

8-demicubic honeycomb
(No image)
TypeUniform 8-honeycomb
FamilyAlternated hypercube honeycomb
Schläfli symbolh{4,3,3,3,3,3,3,4}
Coxeter diagrams =
=
Facets{3,3,3,3,3,3,4}
h{4,3,3,3,3,3,3}
Vertex figureRectified 8-orthoplex
Coxeter group [4,3,3,3,3,3,31,1]
[31,1,3,3,3,3,31,1]

It is composed of two different types of facets. The 8-cubes become alternated into 8-demicubes h{4,3,3,3,3,3,3} and the alternated vertices create 8-orthoplex {3,3,3,3,3,3,4} facets .

Remove ads

D8 lattice

Summarize
Perspective

The vertex arrangement of the 8-demicubic honeycomb is the D8 lattice.[1] The 112 vertices of the rectified 8-orthoplex vertex figure of the 8-demicubic honeycomb reflect the kissing number 112 of this lattice.[2] The best known is 240, from the E8 lattice and the 521 honeycomb.

contains as a subgroup of index 270.[3] Both and can be seen as affine extensions of from different nodes: Thumb

The D+
8
lattice (also called D2
8
) can be constructed by the union of two D8 lattices.[4] This packing is only a lattice for even dimensions. The kissing number is 240. (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8).[5] It is identical to the E8 lattice. At 8-dimensions, the 240 contacts contain both the 27=128 from lower dimension contact progression (2n-1), and 16*7=112 from higher dimensions (2n(n-1)).

= .

The D*
8
lattice (also called D4
8
and C2
8
) can be constructed by the union of all four D8 lattices:[6] It is also the 7-dimensional body centered cubic, the union of two 7-cube honeycombs in dual positions.

= .

The kissing number of the D*
8
lattice is 16 (2n for n≥5).[7] and its Voronoi tessellation is a quadrirectified 8-cubic honeycomb, , containing all trirectified 8-orthoplex Voronoi cell, .[8]

Remove ads

Symmetry constructions

Summarize
Perspective

There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 256 8-demicube facets around each vertex.

More information , ...
Remove ads

See also

Notes

Loading content...

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads