Top Qs
Timeline
Chat
Perspective
Dini derivative
Class of generalisations of the derivative From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In mathematics and, specifically, real analysis, the Dini derivatives (or Dini derivates) are a class of generalizations of the derivative. They were introduced by Ulisse Dini, who studied continuous but nondifferentiable functions.
The upper Dini derivative, which is also called an upper right-hand derivative,[1] of a continuous function
is denoted by f and defined by
where lim sup is the supremum limit and the limit is a one-sided limit. The lower Dini derivative, f, is defined by
where lim inf is the infimum limit.
If f is defined on a vector space, then the upper Dini derivative at t in the direction d is defined by
If f is locally Lipschitz, then f is finite. If f is differentiable at t, then the Dini derivative at t is the usual derivative at t.
Remove ads
Remarks
Summarize
Perspective
- The functions are defined in terms of the infimum and supremum in order to make the Dini derivatives as "bullet proof" as possible, so that the Dini derivatives are well-defined for almost all functions, even for functions that are not conventionally differentiable. The upshot of Dini's analysis is that a function is differentiable at the point t on the real line (ℝ), only if all the Dini derivatives exist, and have the same value.
- Sometimes the notation D+ f(t) is used instead of f(t) and D− f(t) is used instead of f(t).[1]
- Also,
and
- .
- So when using the D notation of the Dini derivatives, the plus or minus sign indicates the left- or right-hand limit, and the placement of the sign indicates the infimum or supremum limit.
- There are two further Dini derivatives, defined to be
and
- .
which are the same as the first pair, but with the supremum and the infimum reversed. For only moderately ill-behaved functions, the two extra Dini derivatives aren't needed. For particularly badly behaved functions, if all four Dini derivatives have the same value () then the function f is differentiable in the usual sense at the point t .
- On the extended reals, each of the Dini derivatives always exist; however, they may take on the values +∞ or −∞ at times (i.e., the Dini derivatives always exist in the extended sense).
Remove ads
See also
- Denjoy–Young–Saks theorem – Mathematical theorem about Dini derivatives
- Derivative (generalizations) – Fundamental construction of differential calculus
- Semi-differentiability
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads