Top Qs
Timeline
Chat
Perspective

Electron affinity (data page)

Chemical data page From Wikipedia, the free encyclopedia

Remove ads

This page deals with the electron affinity as a property of isolated atoms or molecules (i.e. in the gas phase). Solid state electron affinities are not listed here.

Elements

Summarize
Perspective

Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion. The latter can be regarded as the ionization energy of the −1 ion or the zeroth ionization energy.[1] Either convention can be used.[2]

Negative electron affinities can be used in those cases where electron capture requires energy, i.e. when capture can occur only if the impinging electron has a kinetic energy large enough to excite a resonance of the atom-plus-electron system. Conversely electron removal from the anion formed in this way releases energy, which is carried out by the freed electron as kinetic energy. Negative ions formed in these cases are always unstable. They may have lifetimes of the order of microseconds to milliseconds, and invariably autodetach after some time.

† A quantum offset of the velocity imaging-based measurements was revealed in 2025,[3] which could make a revision of all electron affinities marked with a dagger necessary. The value of the downward correction to be applied is determined by the intensity of the electric field that was used in the experiment, which was not published with the original measurements, but can be estimated to be of the order of −20 μeV.


More information Z, Element ...
Remove ads

Molecules

Summarize
Perspective

The electron affinities Eea of some molecules are given in the table below, from the lightest to the heaviest. Many more have been listed by Rienstra-Kiracofe et al. (2002). The electron affinities of the radicals OH and SH are the most precisely known of all molecular electron affinities.

More information Molecule, Name ...
Remove ads

Second and third electron affinity

More information Z, Element ...

Bibliography

  • Janousek, Bruce K.; Brauman, John I. (1979), "Electron affinities", in Bowers, M. T. (ed.), Gas Phase Ion Chemistry, vol. 2, New York: Academic Press, p. 53.
  • Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F.; Nandi, S.; Ellison, G.B. (2002), "Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations", Chem. Rev., vol. 102, no. 1, pp. 231–282, doi:10.1021/cr990044u, PMID 11782134.
  • Updated values can be found in the NIST chemistry webbook for around three dozen elements and close to 400 compounds.

Specific molecules

Remove ads

References

Loading content...

See also

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads