Top Qs
Timeline
Chat
Perspective

Elongated gyrobifastigium

Space-filling polyhedron with 8 faces From Wikipedia, the free encyclopedia

Elongated gyrobifastigium
Remove ads

In geometry, the elongated gyrobifastigium or gabled rhombohedron is a space-filling octahedron with 4 rectangles and 4 right-angled pentagonal faces.

Quick facts Elongated gyrobifastigium Gabled rhombohedron, Type ...
Remove ads

Name

The first name is from the regular-faced gyrobifastigium but elongated with 4 triangles expanded into pentagons. The name of the gyrobifastigium comes from the Latin fastigium, meaning a sloping roof.[1] In the standard naming convention of the Johnson solids, bi- means two solids connected at their bases, and gyro- means the two halves are twisted with respect to each other.[2] The gyrobifastigium is first in a series of gyrobicupola, so this solid can also be called an elongated digonal gyrobicupola. Geometrically, it can also be constructed as the dual of a digonal gyrobianticupola. This construction is space-filling.

The second name, gabled rhombohedron, is from Michael Goldberg's paper on space-filling octahedra, model 8-VI, the 6th of at least 49 space-filling octahedra.[3] A gable is the triangular portion of a wall between the edges of intersecting roof pitches.

Remove ads

Geometry

The elongated gyrobifastigium is the dual polyhedron of a snub disphenoid, one of 92 Johnson solids, as well as a deltahedron for having twelve equilateral triangular faces,[citation needed] sharing the same three-dimensional dihedral symmetry as antiprismatic of order 8. If the underlying rectangular cuboid is distorted into a rhombohedron, the symmetry is reduced to two-fold rotational symmetry, C2, order 2.

The elongated gyrobifastigium is the cell of the isochoric tridecachoron, a polychoron constructed from the dual of the 13-5 step prism, which has a snub disphenoid vertex figure.

Remove ads

Variations

A topologically distinct elongated gyrobifastigium has square and equilateral triangle faces, seen as 2 triangular prisms augmented to a central cube. This is a failed Johnson solid for not being strictly convex.[4]

This is also a space-filling polyhedron, and matches the geometry of the gyroelongated triangular prismatic honeycomb if the elongated gyrobifastigium is dissected back into cubes and triangular prisms.

Thumb
Coplanar square and triangles

The elongated gyrobifastigium must be based on a rectangular cuboid or rhombohedron to fill-space, while the angle of the roof is free, including allowing concave forms. If the roof has zero angle, the geometry becomes a cube or rectangular cuboid.

The pentagons can also be made regular and the rectangles become trapezoids, and it will no longer be space-filling.

More information Type, Space-filling ...

Honeycomb

Like the gyrobifastigium, it can self-tessellate space. Polyhedra are tessellated by translation in the plane, and are stacked with alternate orientations.[3] The cross-section of the polyhedron must be square or rhombic, while the roof angle is free, and can be negative, making a concave polyhedron. Rhombic forms require chiral (mirror image) polyhedral pairs to be space-filling.

Thumb
Equilateral variation
Thumb
Rhombic variation
Thumb
Convex variation
Thumb
Coplanar-faced variation
Thumb
Concave variation
Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads