Top Qs
Timeline
Chat
Perspective
Gamma-glutamyl carboxylase
From Wikipedia, the free encyclopedia
Remove ads
Gamma-glutamyl carboxylase is an enzyme that in humans is encoded by the GGCX gene, located on chromosome 2 at 2p12.[4]
Remove ads
Function
Gamma-glutamyl carboxylase is an enzyme that catalyzes the posttranslational modification of vitamin K-dependent proteins. Many of these vitamin K-dependent proteins are involved in coagulation so the function of the encoded enzyme is essential for hemostasis.[5] Most gla domain-containing proteins depend on this carboxylation reaction for posttranslational modification.[6] In humans, the gamma-glutamyl carboxylase enzyme is most highly expressed in the liver.
Remove ads
Catalytic reaction
Summarize
Perspective
Gamma-glutamyl carboxylase oxidizes vitamin K hydroquinone to Vitamin K-2,3-epoxide, while simultaneously adding CO2 to protein-bound glutamic acid (abbreviation = Glu) to form gamma-carboxyglutamic acid (also called gamma-carboxyglutamate, abbreviation = Gla). Presence of two carboxylate groups causes chelation of Ca2+, resulting in change in tertiary structure of protein and its activation. The carboxylation reaction will only proceed if the carboxylase enzyme is able to oxidize vitamin K hydroquinone to vitamin K epoxide at the same time; the carboxylation and epoxidation reactions are said to be coupled reactions.[7][8]

a [protein]-α-L-glutamate (Glu) + phylloquinol (KH
2) + CO
2 + oxygen → a [protein] 4-carboxy-L-glutamate (Gla) + vitamin K 2,3-epoxide (KO) + H+
+ H
2O
2) + CO
2 + oxygen → a [protein] 4-carboxy-L-glutamate (Gla) + vitamin K 2,3-epoxide (KO) + H+
+ H
2O
No experimental structure is known for GGCX, limiting understanding of its reaction mechanism. Based on the fact that the two reactions are coupled, a computational study is able to propose how the reactants interact with each other to form the products.[9] Lys228 has been shown to be the residue responsible for starting the reaction.[10] How the enzyme holds the reactants in place to have them interact with each other remains poorly shown. 491-507 and 395-401 are probably responsible for propeptide and glutamate binding respectively.[11]
Remove ads
Clinical significance
Mutations in this gene are associated with vitamin K-dependent coagulation defect and PXE-like disorder with multiple coagulation factor deficiency.[5][12]
See also
References
Further reading
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads