Top Qs
Timeline
Chat
Perspective
H4 polytope
Four-dimensional geometric objects From Wikipedia, the free encyclopedia
Remove ads
In 4-dimensional geometry, there are 15 uniform polytopes with H4 symmetry. Two of these, the 120-cell and 600-cell, are regular.
![]() | This article's lead section may need to be rewritten. (October 2023) |
![]() 120-cell ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() 600-cell ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Visualizations
Summarize
Perspective
Each can be visualized as symmetric orthographic projections in Coxeter planes of the H4 Coxeter group, and other subgroups.
The 3D picture are drawn as Schlegel diagram projections, centered on the cell at pos. 3, with a consistent orientation, and the 5 cells at position 0 are shown solid.
Remove ads
Coordinates
Summarize
Perspective
The coordinates of uniform polytopes from the H4 family are complicated. The regular ones can be expressed in terms of the golden ratio φ = (1 + √5)/2 and σ = (3√5 + 1)/2. Coxeter expressed them as 5-dimensional coordinates.[1]
Remove ads
References
- J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26)
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter Archived 2016-07-11 at the Wayback Machine
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- Denney, Tomme; Hooker, Da'Shay; Johnson, De'Janeke; Robinson, Tianna; Butler, Majid; Claiborne, Sandernishe (2020). "The geometry of H4 polytopes". Advances in Geometry. 20 (3): 433–444. arXiv:1912.06156. doi:10.1515/advgeom-2020-0005. S2CID 220367622.
- Dechant, Pierre-Philippe (2021). "Clifford Spinors and Root System Induction: H4 and the Grand Antiprism". Advances in Applied Clifford Algebras. 31 (3). Springer Science and Business Media. arXiv:2103.07817. doi:10.1007/s00006-021-01139-2.
Notes
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads