Top Qs
Timeline
Chat
Perspective
Infinite-order apeirogonal tiling
From Wikipedia, the free encyclopedia
Remove ads
The infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its ideal vertices.
Infinite-order apeirogonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | ∞∞ |
Schläfli symbol | {∞,∞} |
Wythoff symbol | ∞ | ∞ 2 ∞ ∞ | ∞ |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [∞,∞], (*∞∞2) [(∞,∞,∞)], (*∞∞∞) |
Dual | self-dual |
Properties | Vertex-transitive, edge-transitive, face-transitive |
Remove ads
Symmetry
This tiling represents the fundamental domains of *∞∞ symmetry.
Uniform colorings
This tiling can also be alternately colored in the [(∞,∞,∞)] symmetry from 3 generator positions.
Related polyhedra and tiling
Summarize
Perspective
The union of this tiling and its dual can be seen as orthogonal red and blue lines here, and combined define the lines of a *2∞2∞ fundamental domain.
See also
Wikimedia Commons has media related to Infinite-order apeirogonal tiling.
References
- John Horton Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery Archived 2013-03-24 at the Wayback Machine
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads