Infinite-order apeirogonal tiling

From Wikipedia, the free encyclopedia

Infinite-order apeirogonal tiling

The infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its ideal vertices.

Infinite-order apeirogonal tiling
Thumb
Poincaré disk model of the hyperbolic plane
TypeHyperbolic regular tiling
Vertex configuration
Schläfli symbol{,}
Wythoff symbol | 2
|
Coxeter diagram
Symmetry group[,], (*2)
[(,,)], (*)
Dualself-dual
PropertiesVertex-transitive, edge-transitive, face-transitive

Symmetry

This tiling represents the fundamental domains of *∞ symmetry.

Uniform colorings

This tiling can also be alternately colored in the [(∞,∞,∞)] symmetry from 3 generator positions.

More information Domains ...
Domains 0 1 2
Thumb
symmetry:
[(∞,∞,∞)]  
Thumb
t0{(∞,∞,∞)}
Thumb
t1{(∞,∞,∞)}
Thumb
t2{(∞,∞,∞)}
Close
Summarize
Perspective

The union of this tiling and its dual can be seen as orthogonal red and blue lines here, and combined define the lines of a *2∞2∞ fundamental domain.

Thumb
a{∞,∞} or =
More information Dual tilings, Alternations ...
Paracompact uniform tilings in [,] family

=
=

=
=

=
=

=
=

=
=

=

=
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
{,} t{,} r{,} 2t{,}=t{,} 2r{,}={,} rr{,} tr{,}
Dual tilings
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
V V.. V(.)2 V.. V V4..4. V4.4.
Alternations
[1+,,]
(*2)
[+,]
(*)
[,1+,]
(*)
[,+]
(*)
[,,1+]
(*2)
[(,,2+)]
(2*)
[,]+
(2)
Thumb Thumb Thumb Thumb Thumb Thumb
h{,} s{,} hr{,} s{,} h2{,} hrr{,} sr{,}
Alternation duals
Thumb Thumb Thumb Thumb
V(.) V(3.)3 V(.4)4 V(3.)3 V V(4..4)2 V3.3..3.
Close
More information Dual tilings, Alternations ...
Paracompact uniform tilings in [(,,)] family
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
(,,)
h{,}
r(,,)
h2{,}
(,,)
h{,}
r(,,)
h2{,}
(,,)
h{,}
r(,,)
r{,}
t(,,)
t{,}
Dual tilings
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
V V... V V... V V... V..
Alternations
[(1+,,,)]
(*)
[+,,)]
(*)
[,1+,,)]
(*)
[,+,)]
(*)
[(,,,1+)]
(*)
[(,,+)]
(*)
[,,)]+
()
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
Alternation duals
Thumb Thumb Thumb Thumb Thumb Thumb
V(.) V(.4)4 V(.) V(.4)4 V(.) V(.4)4 V3..3..3.
Close

See also

References

  • John Horton Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.