Top Qs
Timeline
Chat
Perspective

Kaniadakis Weibull distribution

Continuous probability distribution From Wikipedia, the free encyclopedia

Kaniadakis Weibull distribution
Remove ads

The Kaniadakis Weibull distribution (or κ-Weibull distribution) is a probability distribution arising as a generalization of the Weibull distribution.[1][2] It is one example of a Kaniadakis κ-distribution. The κ-Weibull distribution has been adopted successfully for describing a wide variety of complex systems in seismology, economy, epidemiology, among many others.

Quick Facts Parameters, Support ...
Remove ads
Remove ads

Definitions

Summarize
Perspective

Probability density function

The Kaniadakis κ-Weibull distribution is exhibits power-law right tails, and it has the following probability density function:[3]

valid for , where is the entropic index associated with the Kaniadakis entropy, is the scale parameter, and is the shape parameter or Weibull modulus.

The Weibull distribution is recovered as

Cumulative distribution function

The cumulative distribution function of κ-Weibull distribution is given by

valid for . The cumulative Weibull distribution is recovered in the classical limit .

Survival distribution and hazard functions

The survival distribution function of κ-Weibull distribution is given by

valid for . The survival Weibull distribution is recovered in the classical limit .

Thumb
Comparison between the Kaniadakis κ-Weibull probability function and its cumulative.

The hazard function of the κ-Weibull distribution is obtained through the solution of the κ-rate equation:

with , where is the hazard function:

The cumulative κ-Weibull distribution is related to the κ-hazard function by the following expression:

where

is the cumulative κ-hazard function. The cumulative hazard function of the Weibull distribution is recovered in the classical limit : .

Remove ads

Properties

Summarize
Perspective

Moments, median and mode

The κ-Weibull distribution has moment of order given by

The median and the mode are:

Quantiles

The quantiles are given by the following expression

with .

Gini coefficient

The Gini coefficient is:[3]

Asymptotic behavior

The κ-Weibull distribution II behaves asymptotically as follows:[3]

Remove ads
  • The κ-Weibull distribution is a generalization of:
  • A κ-Weibull distribution corresponds to a κ-deformed Rayleigh distribution when and a Rayleigh distribution when and .

Applications

The κ-Weibull distribution has been applied in several areas, such as:

  • In economy, for analyzing personal income models, in order to accurately describing simultaneously the income distribution among the richest part and the great majority of the population.[1][4][5]
  • In seismology, the κ-Weibull represents the statistical distribution of magnitude of the earthquakes distributed across the Earth, generalizing the Gutenberg–Richter law,[6] and the interval distributions of seismic data, modeling extreme-event return intervals.[7][8]
  • In epidemiology, the κ-Weibull distribution presents a universal feature for epidemiological analysis.[9]
Remove ads

See also

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads