List of semiconductor scale examples

From Wikipedia, the free encyclopedia

Listed are many semiconductor scale examples for various metal–oxide–semiconductor field-effect transistor (MOSFET, or MOS transistor) semiconductor manufacturing process nodes.

Timeline of MOSFET demonstrations

Summarize
Perspective

PMOS and NMOS

More information Date, Channel length ...
MOSFET (PMOS and NMOS) demonstrations
Date Channel length Oxide thickness[1] MOSFET logic Researcher(s) Organization Ref
June 1960 20,000 nm 100 nm PMOS Mohamed M. Atalla, Dawon Kahng Bell Telephone Laboratories [2][3]
NMOS
10,000 nm 100 nm PMOS Mohamed M. Atalla, Dawon Kahng Bell Telephone Laboratories [4]
NMOS
May 1965 8,000 nm 150 nm NMOS Chih-Tang Sah, Otto Leistiko, A.S. Grove Fairchild Semiconductor [5]
5,000 nm 170 nm PMOS
December 1972 1,000 nm  ? PMOS Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu IBM T.J. Watson Research Center [6][7][8]
1973 7,500 nm  ? NMOS Sohichi Suzuki NEC [9][10]
6,000 nm  ? PMOS  ? Toshiba [11][12]
October 1974 1,000 nm 35 nm NMOS Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu IBM T.J. Watson Research Center [13]
500 nm
September 1975 1,500 nm 20 nm NMOS Ryoichi Hori, Hiroo Masuda, Osamu Minato Hitachi [7][14]
March 1976 3,000 nm  ? NMOS  ? Intel [15]
April 1979 1,000 nm 25 nm NMOS William R. Hunter, L. M. Ephrath, Alice Cramer IBM T.J. Watson Research Center [16]
December 1984 100 nm 5 nm NMOS Toshio Kobayashi, Seiji Horiguchi, K. Kiuchi Nippon Telegraph and Telephone [17]
December 1985 150 nm 2.5 nm NMOS Toshio Kobayashi, Seiji Horiguchi, M. Miyake, M. Oda Nippon Telegraph and Telephone [18]
75 nm  ? NMOS Stephen Y. Chou, Henry I. Smith, Dimitri A. Antoniadis MIT [19]
January 1986 60 nm  ? NMOS Stephen Y. Chou, Henry I. Smith, Dimitri A. Antoniadis MIT [20]
June 1987 200 nm 3.5 nm PMOS Toshio Kobayashi, M. Miyake, K. Deguchi Nippon Telegraph and Telephone [21]
December 1993 40 nm  ? NMOS Mizuki Ono, Masanobu Saito, Takashi Yoshitomi Toshiba [22]
September 1996 16 nm  ? PMOS Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba NEC [23]
June 1998 50 nm 1.3 nm NMOS Khaled Z. Ahmed, Effiong E. Ibok, Miryeong Song Advanced Micro Devices (AMD) [24][25]
December 2002 6 nm  ? PMOS Bruce Doris, Omer Dokumaci, Meikei Ieong IBM [26][27][28]
December 2003 3 nm  ? PMOS Hitoshi Wakabayashi, Shigeharu Yamagami NEC [29][27]
 ? NMOS
Close

CMOS (single-gate)

More information Date, Channel length ...
Complementary MOSFET (CMOS) demonstrations (single-gate)
Date Channel length Oxide thickness[1] Researcher(s) Organization Ref
February 1963  ?  ? Chih-Tang Sah, Frank Wanlass Fairchild Semiconductor [30][31]
1968 20,000 nm 100 nm  ? RCA Laboratories [32]
1970 10,000 nm 100 nm  ? RCA Laboratories [32]
December 1976 2,000 nm  ? A. Aitken, R.G. Poulsen, A.T.P. MacArthur, J.J. White Mitel Semiconductor [33]
February 1978 3,000 nm  ? Toshiaki Masuhara, Osamu Minato, Toshio Sasaki, Yoshio Sakai Hitachi Central Research Laboratory [34][35][36]
February 1983 1,200 nm 25 nm R.J.C. Chwang, M. Choi, D. Creek, S. Stern, P.H. Pelley Intel [37][38]
900 nm 15 nm Tsuneo Mano, J. Yamada, Junichi Inoue, S. Nakajima Nippon Telegraph and Telephone (NTT) [37][39]
December 1983 1,000 nm 22.5 nm G.J. Hu, Yuan Taur, Robert H. Dennard, Chung-Yu Ting IBM T.J. Watson Research Center [40]
February 1987 800 nm 17 nm T. Sumi, Tsuneo Taniguchi, Mikio Kishimoto, Hiroshige Hirano Matsushita [37][41]
700 nm 12 nm Tsuneo Mano, J. Yamada, Junichi Inoue, S. Nakajima Nippon Telegraph and Telephone (NTT) [37][42]
September 1987 500 nm 12.5 nm Hussein I. Hanafi, Robert H. Dennard, Yuan Taur, Nadim F. Haddad IBM T.J. Watson Research Center [43]
December 1987 250 nm  ? Naoki Kasai, Nobuhiro Endo, Hiroshi Kitajima NEC [44]
February 1988 400 nm 10 nm M. Inoue, H. Kotani, T. Yamada, Hiroyuki Yamauchi Matsushita [37][45]
December 1990 100 nm  ? Ghavam G. Shahidi, Bijan Davari, Yuan Taur, James D. Warnock IBM T.J. Watson Research Center [46]
1993 350 nm  ?  ? Sony [47]
1996 150 nm  ?  ? Mitsubishi Electric
1998 180 nm  ?  ? TSMC [48]
December 2003 5 nm  ? Hitoshi Wakabayashi, Shigeharu Yamagami, Nobuyuki Ikezawa NEC [29][49]
Close

Multi-gate MOSFET (MuGFET)

More information Date, Channel length ...
Multi-gate MOSFET (MuGFET) demonstrations
Date Channel length MuGFET type Researcher(s) Organization Ref
August 1984  ? DGMOS Toshihiro Sekigawa, Yutaka Hayashi Electrotechnical Laboratory (ETL) [50]
1987 2,000 nm DGMOS Toshihiro Sekigawa Electrotechnical Laboratory (ETL) [51]
December 1988 250 nm DGMOS Bijan Davari, Wen-Hsing Chang, Matthew R. Wordeman, C.S. Oh IBM T.J. Watson Research Center [52][53]
180 nm
 ? GAAFET Fujio Masuoka, Hiroshi Takato, Kazumasa Sunouchi, N. Okabe Toshiba [54][55][56]
December 1989 200 nm FinFET Digh Hisamoto, Toru Kaga, Yoshifumi Kawamoto, Eiji Takeda Hitachi Central Research Laboratory [57][58][59]
December 1998 17 nm FinFET Digh Hisamoto, Chenming Hu, Tsu-Jae King Liu, Jeffrey Bokor University of California (Berkeley) [60][61]
2001 15 nm FinFET Chenming Hu, Yang-Kyu Choi, Nick Lindert, Tsu-Jae King Liu University of California (Berkeley) [60][62]
December 2002 10 nm FinFET Shibly Ahmed, Scott Bell, Cyrus Tabery, Jeffrey Bokor University of California (Berkeley) [60][63]
June 2006 3 nm GAAFET Hyunjin Lee, Yang-kyu Choi, Lee-Eun Yu, Seong-Wan Ryu KAIST [64][65]
Close

Other types of MOSFET

More information Date, Channellength(nm) ...
MOSFET demonstrations (other types)
Date Channel
length
(nm)
Oxide
thickness
(nm)
[1]
MOSFET
type
Researcher(s) Organization Ref
October 1962  ?  ? TFT Paul K. Weimer RCA Laboratories [66][67]
1965  ?  ? GaAs H. Becke, R. Hall, J. White RCA Laboratories [68]
October 1966 100,000 100 TFT T.P. Brody, H.E. Kunig Westinghouse Electric [69][70]
August 1967  ?  ? FGMOS Dawon Kahng, Simon Min Sze Bell Telephone Laboratories [71]
October 1967  ?  ? MNOS H.A. Richard Wegener, A.J. Lincoln, H.C. Pao Sperry Corporation [72]
July 1968  ?  ? BiMOS Hung-Chang Lin, Ramachandra R. Iyer Westinghouse Electric [73][74]
October 1968  ?  ? BiCMOS Hung-Chang Lin, Ramachandra R. Iyer, C.T. Ho Westinghouse Electric [75][74]
1969  ?  ? VMOS  ? Hitachi [76][77]
September 1969  ?  ? DMOS Y. Tarui, Y. Hayashi, Toshihiro Sekigawa Electrotechnical Laboratory (ETL) [78][79]
October 1970  ?  ? ISFET Piet Bergveld University of Twente [80][81]
October 1970 1000  ? DMOS Y. Tarui, Y. Hayashi, Toshihiro Sekigawa Electrotechnical Laboratory (ETL) [82]
1977  ?  ? VDMOS John Louis Moll HP Labs [76]
 ?  ? LDMOS  ? Hitachi [83]
July 1979  ?  ? IGBT Bantval Jayant Baliga, Margaret Lazeri General Electric [84]
December 1984 2000  ? BiCMOS H. Higuchi, Goro Kitsukawa, Takahide Ikeda, Y. Nishio Hitachi [85]
May 1985 300  ?  ? K. Deguchi, Kazuhiko Komatsu, M. Miyake, H. Namatsu Nippon Telegraph and Telephone [86]
February 1985 1000  ? BiCMOS H. Momose, Hideki Shibata, S. Saitoh, Jun-ichi Miyamoto Toshiba [87]
November 1986 90 8.3  ? Han-Sheng Lee, L.C. Puzio General Motors [88]
December 1986 60  ?  ? Ghavam G. Shahidi, Dimitri A. Antoniadis, Henry I. Smith MIT [89][20]
May 1987  ? 10  ? Bijan Davari, Chung-Yu Ting, Kie Y. Ahn, S. Basavaiah IBM T.J. Watson Research Center [90]
December 1987 800  ? BiCMOS Robert H. Havemann, R. E. Eklund, Hiep V. Tran Texas Instruments [91]
June 1997 30  ? EJ-MOSFET Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba NEC [92]
1998 32  ?  ?  ? NEC [27]
1999 8  ?  ?  ?
April 2000 8  ? EJ-MOSFET Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba NEC [93]
Close

Commercial products using micro-scale MOSFETs

Products featuring 20 μm manufacturing process

Products featuring 10 μm manufacturing process

Products featuring 8 μm manufacturing process

Products featuring 6 μm manufacturing process

Products featuring 3 μm manufacturing process

Products featuring 1.5 μm manufacturing process

Products featuring 1 μm manufacturing process

Products featuring 800 nm manufacturing process

Products featuring 600 nm manufacturing process

Products featuring 350 nm manufacturing process

Products featuring 250 nm manufacturing process

Processors using 180 nm manufacturing technology

Processors using 130 nm manufacturing technology

Commercial products using nano-scale MOSFETs

Chips using 90 nm manufacturing technology

Processors using 65 nm manufacturing technology

Processors using 45 nm technology

Chips using 32 nm technology

  • Toshiba produced commercial 32 Gb NAND flash memory chips with the 32 nm process in 2009.[107]
  • Intel Core i3 and i5 processors, released in January 2010[108]
  • Intel 6-core processor, codenamed Gulftown[109]
  • Intel i7-970, was released in late July 2010, priced at approximately US$900
  • AMD FX Series processors, codenamed Zambezi and based on AMD's Bulldozer architecture, were released in October 2011. The technology used a 32 nm SOI process, two CPU cores per module, and up to four modules, ranging from a quad-core design costing approximately US$130 to a $280 eight-core design.
  • Ambarella Inc. announced the availability of the A7L system-on-a-chip circuit for digital still cameras, providing 1080p60 high-definition video capabilities in September 2011[110]

Chips using 24–28 nm technology

  • SK Hynix announced that it could produce a 26 nm flash chip with 64 Gb capacity; Intel Corp. and Micron Technology had by then already developed the technology themselves. Announced in 2010.[111]
  • Toshiba announced that it was shipping 24 nm flash memory NAND devices on August 31, 2010.[112]
  • In 2016 MCST's 28 nm processor Elbrus-8S went for serial production.[113][114]

Chips using 22 nm technology

  • Intel Core i7 and Intel Core i5 processors based on Intel's Ivy Bridge 22 nm technology for series 7 chip-sets went on sale worldwide on April 23, 2012.[115]

Chips using 20 nm technology

Chips using 16 nm technology

Chips using 14 nm technology

Chips using 10 nm technology

Chips using 7 nm technology

  • TSMC began risk production of 256 Mbit SRAM memory chips using a 7 nm process in April 2017.[125]
  • Samsung and TSMC began mass production of 7 nm devices in 2018.[126]
  • Apple A12 and Huawei Kirin 980 mobile processors, both released in 2018, use 7 nm chips manufactured by TSMC.[127]
  • AMD began using TSMC 7 nm starting with the Vega 20 GPU in November 2018,[128] with Zen 2-based CPUs and APUs from July 2019,[129] and for both PlayStation 5 [130] and Xbox Series X/S [131] consoles' APUs, released both in November 2020.

Chips using 5 nm technology

  • Samsung began production of 5 nm chips (5LPE) in late 2018.[132]
  • TSMC began production of 5 nm chips (CLN5FF) in April 2019.[133]

Chips using 3 nm technology

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.