Top Qs
Timeline
Chat
Perspective

Order-5 square tiling

From Wikipedia, the free encyclopedia

Order-5 square tiling
Remove ads

In geometry, the order-5 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,5}.

Order-5 square tiling
Thumb
Poincaré disk model of the hyperbolic plane
TypeHyperbolic regular tiling
Vertex configuration45
Schläfli symbol{4,5}
Wythoff symbol5 | 4 2
Coxeter diagram
Symmetry group[5,4], (*542)
DualOrder-4 pentagonal tiling
PropertiesVertex-transitive, edge-transitive, face-transitive
Remove ads
More information Spherical ...

This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4n).

More information Spherical, Euclidean ...
More information Symmetry: [5,4], (*542), [5,4]+, (542) ...

This hyperbolic tiling is related to a semiregular infinite skew polyhedron with the same vertex figure in Euclidean 3-space.

Thumb
Remove ads

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also


Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads