Top Qs
Timeline
Chat
Perspective

Periodic table (crystal structure)

Crystalline structure for solid elements From Wikipedia, the free encyclopedia

Remove ads

This articles gives the crystalline structures of the elements of the periodic table which have been produced in bulk at STP and at their melting point (while still solid) and predictions of the crystalline structures of the rest of the elements.


Standard temperature and pressure

Summarize
Perspective

The following table gives the crystalline structure of the most thermodynamically stable form(s) for elements that are solid at standard temperature and pressure. Each element is shaded by a color representing its respective Bravais lattice, except that all orthorhombic lattices are grouped together.

Crystal structure of elements in the periodic table at standard temperature and pressure[1]
1
H
 
2
He
 
3
Li
W
4
Be
Mg
5
B
β-B
6
C
g-C
7
N
 
8
O
 
9
F
 
10
Ne
 
11
Na
W
12
Mg
Mg
13
Al
Cu
14
Si
d-C
15
P
b-P
16
S
α-S
17
Cl
 
18
Ar
 
19
K
W
20
Ca
Cu
21
Sc
Mg
22
Ti
Mg
23
V
W
24
Cr
W
25
Mn
α-Mn
26
Fe
W
27
Co
Mg
28
Ni
Cu
29
Cu
Cu
30
Zn
Mg
31
Ga
α-Ga
32
Ge
d-C
33
As
α-As
34
Se
γ-Se
35
Br
 
36
Kr
 
37
Rb
W
38
Sr
Cu
39
Y
Mg
40
Zr
Mg
41
Nb
W
42
Mo
W
43
Tc
Mg
44
Ru
Mg
45
Rh
Cu
46
Pd
Cu
47
Ag
Cu
48
Cd
Mg
49
In
In
50
Sn
β-Sn
51
Sb
α-As
52
Te
γ-Se
53
I
Cl
54
Xe
 
55
Cs
W
56
Ba
W
1 asterisk 71
Lu
Mg
72
Hf
Mg
73
Ta
W
74
W
W
75
Re
Mg
76
Os
Mg
77
Ir
Cu
78
Pt
Cu
79
Au
Cu
80
Hg
 
81
Tl
Mg
82
Pb
Cu
83
Bi
α-As
84
Po
α-Po
85
At
 
86
Rn
 
87
Fr
 
88
Ra
W
2 asterisks 103
Lr
 
104
Rf
 
105
Db
 
106
Sg
 
107
Bh
 
108
Hs
 
109
Mt
 
110
Ds
 
111
Rg
 
112
Cn
 
113
Nh
 
114
Fl
 
115
Mc
 
116
Lv
 
117
Ts
 
118
Og
 

1 asterisk 57
La
α-La
58
Ce
α-La
59
Pr
α-La
60
Nd
α-La
61
Pm
α-La
62
Sm
α-Sm
63
Eu
W
64
Gd
Mg
65
Tb
Mg
66
Dy
Mg
67
Ho
Mg
68
Er
Mg
69
Tm
Mg
70
Yb
Cu
2 asterisks 89
Ac
Cu
90
Th
Cu
91
Pa
α-Pa
92
U
α-U
93
Np
α-Np
94
Pu
α-Pu
95
Am
α-La
96
Cm
α-La
97
Bk
α-La
98
Cf
α-La
99
Es
Cu
100
Fm
 
101
Md
 
102
No
 
More information Legend: ...
Remove ads

Melting point and standard pressure

Summarize
Perspective

The following table gives the most stable crystalline structure of each element at its melting point at atmospheric pressure (H, He, N, O, F, Ne, Cl, Ar, Kr, Xe, and Rn are gases at STP; Br and Hg are liquids at STP.) Note that helium does not have a melting point at atmospheric pressure, but it adopts a magnesium-type hexagonal close-packed structure under high pressure.

More information Crystal structures of elements at their melting points at atmospheric pressure ...
More information Legend: ...
Remove ads

Predicted structures

Summarize
Perspective

The following table give predictions for the crystalline structure of elements 85–87, 100–113 and 118; all but radon[2] have not been produced in bulk. Most probably Cn and Fl would be liquids at STP (ignoring radioactive self-heating concerns). Calculations have difficulty replicating the experimentally known structures of the stable alkali metals, and the same problem affects Fr;[3] nonetheless, it is probably isostructural to its lighter congeners.[4] The latest predictions for Fl could not distinguish between FCC and HCP structures, which were predicted to be close in energy.[5] No predictions are available for elements 115–117.

More information Predicted crystal structures of highly unstable elements ...
More information Legend: ...
Remove ads

Structure types

Summarize
Perspective

The following is a list of structure types which appear in the tables above. Regarding the number of atoms in the unit cell, structures in the rhombohedral lattice system have a rhombohedral primitive cell and have trigonal point symmetry but are also often also described in terms of an equivalent but nonprimitive hexagonal unit cell with three times the volume and three times the number of atoms.

More information which has ...

Close packed metal structures

The observed crystal structures of many metals can be described as a nearly mathematical close-packing of equal spheres. A simple model for both of these is to assume that the metal atoms are spherical and are packed together as closely as possible. In closest packing, every atom has 12 equidistant nearest neighbours, and therefore a coordination number of 12. If the close packed structures are considered as being built of layers of spheres, then the difference between hexagonal close packing and face-centred cubic is how each layer is positioned relative to others. The following types can be viewed as a regular buildup of close-packed layers:

  • Mg type (hexagonal close packing) has alternate layers positioned directly above/below each other: A,B,A,B,...
  • Cu type (face-centered cubic) has every third layer directly above/below each other: A,B,C,A,B,C,...
  • α-La type (double hexagonal close packing) has layers directly above/below each other, A,B,A,C,A,B,A,C,.... of period length 4 like an alternative mixture of fcc and hcp packing.[21]
  • α-Sm type has a period of 9 layers A,B,A,B,C,B,C,A,C,...[22]

Precisely speaking, the structures of many of the elements in the groups above are slightly distorted from the ideal closest packing. While they retain the lattice symmetry as the ideal structure, they often have nonideal c/a ratios for their unit cell. Less precisely speaking, there are also other elements are nearly close-packed but have distortions which have at least one broken symmetry with respect to the close-packed structure:

  • In type is slightly distorted from a cubic close packed structure
  • α-Pa type is distorted from a hexagonal close packed structure
Remove ads

See also

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads