Reeb graph
From Wikipedia, the free encyclopedia
A Reeb graph[1] (named after Georges Reeb by René Thom) is a mathematical object reflecting the evolution of the level sets of a real-valued function on a manifold.[2] According to [3] a similar concept was introduced by G.M. Adelson-Velskii and A.S. Kronrod and applied to analysis of Hilbert's thirteenth problem.[4] Proposed by G. Reeb as a tool in Morse theory,[5] Reeb graphs are the natural tool to study multivalued functional relationships between 2D scalar fields , , and arising from the conditions and , because these relationships are single-valued when restricted to a region associated with an individual edge of the Reeb graph. This general principle was first used to study neutral surfaces in oceanography.[6]

Reeb graphs have also found a wide variety of applications in computational geometry and computer graphics,[1][7] including computer aided geometric design, topology-based shape matching,[8][9][10] topological data analysis,[11] topological simplification and cleaning, surface segmentation [12] and parametrization, efficient computation of level sets, neuroscience,[13] and geometrical thermodynamics.[3] In a special case of a function on a flat space (technically a simply connected domain), the Reeb graph forms a polytree and is also called a contour tree.[14]
Level set graphs help statistical inference related to estimating probability density functions and regression functions, and they can be used in cluster analysis and function optimization, among other things. [15]
Formal definition
Given a topological space X and a continuous function f: X → R, define an equivalence relation ~ on X where p~q whenever p and q belong to the same connected component of a single level set f−1(c) for some real c. The Reeb graph is the quotient space X /~ endowed with the quotient topology.
Generally, this quotient space does not have the structure of a finite graph. Even for a smooth function on a smooth manifold, the Reeb graph can be not one-dimensional and even non-Hausdorff space.[16]
In fact, the compactness of the manifold is crucial: The Reeb graph of a smooth function on a closed manifold is a one-dimensional Peano continuum that is homotopy equivalent to a finite graph.[16] In particular, the Reeb graph of a smooth function on a closed manifold with a finite number of critical values –which is the case of Morse functions, Morse–Bott functions or functions with isolated critical points – has the structure of a finite graph.[17]
Structure of the Reeb graph defined by a smooth function
Let be a smooth function on a closed manifold . The structure of the Reeb graph depends both on the manifold and on the class of the function .
The first Betti number of the Reeb graph
Since for a smooth function on a closed manifold, the Reeb graph is one-dimensional,[16] we consider only its first Betti number ; if has the structure of a finite graph, then is the cycle rank of this graph. An upper bound holds[18][16]
,
where is the co-rank of the fundamental group of the manifold. If , this bound is tight even in the class of simple Morse functions.[19]
If , for smooth functions this bound is also tight, and in terms of the genus of the surface the bound can be rewritten as
If , for Morse functions, there is a better bound for the cycle rank. Since for Morse functions, the Reeb graph is a finite graph,[17] we denote by the number of vertices with degree 2 in . Then[20]
Leaf blocks of the Reeb graph
If is a Morse or Morse–Bott function on a closed manifold, then its Reeb graph has the structure of a finite graph.[17] This finite graph has a specific structure, namely
- If is Morse, then has no loops, and all its leaf blocks are complete graphs , i.e., closed intervals[21]
- If is Morse–Bott, then has no loops, and each its leaf block contains a vertex with degree at most 2[22]
Description for Morse functions
If is a Morse function with distinct critical values, the Reeb graph can be described more explicitly. Its nodes, or vertices, correspond to the critical level sets . The pattern in which the arcs, or edges, meet at the nodes/vertices reflects the change in topology of the level set as passes through the critical value . For example, if is a minimum or a maximum of , a component is created or destroyed; consequently, an arc originates or terminates at the corresponding node, which has degree 1. If is a saddle point of index 1 and two components of merge at as increases, the corresponding vertex of the Reeb graph has degree 3 and looks like the letter "Y". The same reasoning applies if the index of is and a component of splits into two.
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.