Top Qs
Timeline
Chat
Perspective
Solar eclipse of July 1, 2000
20th-century partial solar eclipse From Wikipedia, the free encyclopedia
Remove ads
A partial solar eclipse occurred at the Moon’s ascending node of orbit on Saturday, July 1, 2000,[1] with a magnitude of 0.4768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
Remove ads
This was the second of four partial solar eclipses in 2000, with the others occurring on February 5, July 31, and December 25.
A partial eclipse was visible for parts of extreme southern South America near sunset.
Remove ads
Images
Eclipse details
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Related eclipses
Eclipses in 2000
- A total lunar eclipse on January 21.
- A partial solar eclipse on February 5.
- A partial solar eclipse on July 1.
- A total lunar eclipse on July 16.
- A partial solar eclipse on July 31.
- A partial solar eclipse on December 25.
Metonic
- Followed by: Solar eclipse of April 19, 2004
Tzolkinex
- Preceded by: Solar eclipse of May 21, 1993
Half-Saros
- Preceded by: Lunar eclipse of June 27, 1991
- Followed by: Lunar eclipse of July 7, 2009
Tritos
- Followed by: Solar eclipse of June 1, 2011
Solar Saros 117
- Preceded by: Solar eclipse of June 21, 1982
- Followed by: Solar eclipse of July 13, 2018
Inex
- Preceded by: Solar eclipse of July 22, 1971
- Followed by: Solar eclipse of June 12, 2029
Triad
- Preceded by: Solar eclipse of August 31, 1913
- Followed by: Solar eclipse of May 2, 2087
Solar eclipses of 2000–2003
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
The partial solar eclipses on February 5, 2000 and July 31, 2000 occur in the previous lunar year eclipse set.
Saros 117
This eclipse is a part of Saros series 117, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 24, 792 AD. It contains annular eclipses from September 18, 936 AD through May 14, 1333; hybrid eclipses from May 25, 1351 through July 8, 1423; and total eclipses from July 18, 1441 through May 19, 1928. The series ends at member 71 as a partial eclipse on August 3, 2054. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 16 at 9 minutes, 26 seconds on December 3, 1062, and the longest duration of totality was produced by member 62 at 4 minutes, 19 seconds on April 26, 1892. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on April 8, 1902 (part of Saros 108) and January 5, 1935 (part of Saros 111) are also a part of this series but are not included in the table below.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads