Top Qs
Timeline
Chat
Perspective
January 2000 lunar eclipse
Total lunar eclipse of 21 January 2000 From Wikipedia, the free encyclopedia
Remove ads
A total lunar eclipse occurred at the Moon’s ascending node of orbit on Friday, January 21, 2000,[1] with an umbral magnitude of 1.3246. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.5 days after perigee (on January 19, 2000, at 17:50 UTC), the Moon's apparent diameter was larger.[2]
Remove ads
Remove ads
Visibility
The eclipse was completely visible over most of North America, South America, and western Europe, seen rising over the Pacific Ocean and setting over Africa, Europe, and west Asia.[3]
![]() |
![]() Hourly motion shown right to left |
Eclipse details
Shown below is a table displaying details about this particular lunar eclipse. It describes various parameters pertaining to this eclipse.[4]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Summarize
Perspective
Eclipses in 2000
- A total lunar eclipse on January 21.
- A partial solar eclipse on February 5.
- A partial solar eclipse on July 1.
- A total lunar eclipse on July 16.
- A partial solar eclipse on July 31.
- A partial solar eclipse on December 25.
Metonic
- Preceded by: Lunar eclipse of April 4, 1996
- Followed by: Lunar eclipse of November 9, 2003
Tzolkinex
- Preceded by: Lunar eclipse of December 9, 1992
- Followed by: Lunar eclipse of March 3, 2007
Half-Saros
- Preceded by: Solar eclipse of January 15, 1991
- Followed by: Solar eclipse of January 26, 2009
Tritos
- Preceded by: Lunar eclipse of February 20, 1989
- Followed by: Lunar eclipse of December 21, 2010
Lunar Saros 124
- Preceded by: Lunar eclipse of January 9, 1982
- Followed by: Lunar eclipse of January 31, 2018
Inex
- Preceded by: Lunar eclipse of February 10, 1971
- Followed by: Lunar eclipse of December 31, 2028
Triad
- Preceded by: Lunar eclipse of March 22, 1913
- Followed by: Lunar eclipse of November 20, 2086
Lunar eclipses of 1998–2002
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipses on March 13, 1998 and September 6, 1998 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on May 26, 2002 and November 20, 2002 occur in the next lunar year eclipse set.
Saros 124
This eclipse is a part of Saros series 124, repeating every 18 years, 11 days, and containing 73 events. The series started with a penumbral lunar eclipse on August 17, 1152. It contains partial eclipses from March 21, 1513 through June 15, 1639; total eclipses from June 25, 1657 through April 18, 2144; and a second set of partial eclipses from April 29, 2162 through July 14, 2288. The series ends at member 73 as a penumbral eclipse on October 21, 2450.
The longest duration of totality was produced by member 39 at 101 minutes, 27 seconds on August 30, 1765. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half-saros).[8] This lunar eclipse is related to two annular solar eclipses of Solar Saros 131.
January 15, 1991 | January 26, 2009 |
---|---|
![]() |
![]() |
Remove ads
See also
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads