Top Qs
Timeline
Chat
Perspective
Solar eclipse of March 31, 2071
Future annular solar eclipse From Wikipedia, the free encyclopedia
Remove ads
An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, March 31, 2071,[1] with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 7.2 days after apogee (on March 24, 2071, at 10:05 UTC) and 6.2 days before perigee (on April 6, 2071, at 19:05 UTC).[2]
The path of annularity will be visible from parts of Chile, Argentina, extreme southern Paraguay, Brazil, extreme southern Gabon, Congo, and the Democratic Republic of the Congo. A partial solar eclipse will also be visible for parts of South America, Antarctica, and Africa.
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Remove ads
Related eclipses
Eclipses in 2071
- A penumbral lunar eclipse on March 16.
- An annular solar eclipse on March 31.
- A penumbral lunar eclipse on September 9.
- A total solar eclipse on September 23.
Metonic
- Preceded by: Solar eclipse of June 11, 2067
- Followed by: Solar eclipse of January 16, 2075
Tzolkinex
- Preceded by: Solar eclipse of February 17, 2064
- Followed by: Solar eclipse of May 11, 2078
Half-Saros
- Preceded by: Lunar eclipse of March 25, 2062
- Followed by: Lunar eclipse of April 4, 2080
Tritos
- Preceded by: Solar eclipse of April 30, 2060
- Followed by: Solar eclipse of February 27, 2082
Solar Saros 140
- Preceded by: Solar eclipse of March 20, 2053
- Followed by: Solar eclipse of April 10, 2089
Inex
- Preceded by: Solar eclipse of April 20, 2042
- Followed by: Solar eclipse of March 10, 2100
Triad
- Preceded by: Solar eclipse of May 30, 1984
- Followed by: Solar eclipse of January 30, 2158
Solar eclipses of 2069–2072
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipse on May 20, 2069 occurs in the previous lunar year eclipse set.
Saros 140
This eclipse is a part of Saros series 140, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on April 16, 1512. It contains total eclipses from July 21, 1656 through November 9, 1836; hybrid eclipses from November 20, 1854 through December 23, 1908; and annular eclipses from January 3, 1927 through December 7, 2485. The series ends at member 71 as a partial eclipse on June 1, 2774. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 11 at 4 minutes, 10 seconds on August 12, 1692, and the longest duration of annularity will be produced by member 53 at 7 minutes, 35 seconds on November 15, 2449. All eclipses in this series occur at the Moon’s descending node of orbit.[5]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads