Top Qs
Timeline
Chat
Perspective
Solar eclipse of October 4, 2070
Future annular solar eclipse From Wikipedia, the free encyclopedia
Remove ads
An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, October 4, 2070,[1] with a magnitude of 0.9731. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.1 days before apogee (on October 10, 2070, at 8:45 UTC), the Moon's apparent diameter will be smaller.[2]
The path of annularity will be visible from parts of Angola, Zambia, Zimbabwe, Mozambique, and Madagascar. A partial solar eclipse will also be visible for parts of Central Africa, Southern Africa, East Africa, Antarctica, and Australia.
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Remove ads
Related eclipses
Eclipses in 2070
- A total solar eclipse on April 11.
- A penumbral lunar eclipse on April 25.
- An annular solar eclipse on October 4.
- A partial lunar eclipse on October 19.
Metonic
- Preceded by: Solar eclipse of December 17, 2066
- Followed by: Solar eclipse of July 24, 2074
Tzolkinex
- Preceded by: Solar eclipse of August 24, 2063
- Followed by: Solar eclipse of November 15, 2077
Half-Saros
- Preceded by: Lunar eclipse of September 29, 2061
- Followed by: Lunar eclipse of October 10, 2079
Tritos
- Preceded by: Solar eclipse of November 5, 2059
- Followed by: Solar eclipse of September 3, 2081
Solar Saros 135
- Preceded by: Solar eclipse of September 22, 2052
- Followed by: Solar eclipse of October 14, 2088
Inex
- Preceded by: Solar eclipse of October 25, 2041
- Followed by: Solar eclipse of September 14, 2099
Triad
- Preceded by: Solar eclipse of December 4, 1983
- Followed by: Solar eclipse of August 5, 2157
Solar eclipses of 2069–2072
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipse on May 20, 2069 occurs in the previous lunar year eclipse set.
Saros 135
This eclipse is a part of Saros series 135, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 5, 1331. It contains annular eclipses from October 21, 1511 through February 24, 2305; hybrid eclipses on March 8, 2323 and March 18, 2341; and total eclipses from March 29, 2359 through May 22, 2449. The series ends at member 71 as a partial eclipse on August 17, 2593. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 16 at 10 minutes, 41 seconds on December 24, 1601, and the longest duration of totality will be produced by member 62 at 2 minutes, 27 seconds on May 12, 2431. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads