Top Qs
Timeline
Chat
Perspective
Solar eclipse of September 2, 2054
Future partial solar eclipse From Wikipedia, the free encyclopedia
Remove ads
A partial solar eclipse will occur at the Moon's ascending node of orbit between Tuesday, September 1 and Wednesday, September 2, 2054,[1] with a magnitude of 0.9793. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
The partial solar eclipse will be visible for parts of Northeast Asia, Alaska, western Canada, and the western United States. This is the last of the first set of partial eclipses in Solar Saros 155.
Remove ads
Eclipse details
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Remove ads
Related eclipses
Eclipses in 2054
- A total lunar eclipse on February 22.
- A partial solar eclipse on March 9.
- A partial solar eclipse on August 3.
- A total lunar eclipse on August 18.
- A partial solar eclipse on September 2.
Metonic
- Preceded by: Solar eclipse of November 14, 2050
- Followed by: Solar eclipse of June 21, 2058
Tzolkinex
- Preceded by: Solar eclipse of July 22, 2047
- Followed by: Solar eclipse of October 13, 2061
Half-Saros
- Preceded by: Lunar eclipse of August 27, 2045
- Followed by: Lunar eclipse of September 7, 2063
Tritos
- Preceded by: Solar eclipse of October 3, 2043
- Followed by: Solar eclipse of August 2, 2065
Solar Saros 155
- Preceded by: Solar eclipse of August 21, 2036
- Followed by: Solar eclipse of September 12, 2072
Inex
- Preceded by: Solar eclipse of September 21, 2025
- Followed by: Solar eclipse of August 13, 2083
Triad
- Preceded by: Solar eclipse of November 2, 1967
- Followed by: Solar eclipse of July 3, 2141
Solar eclipses of 2051–2054
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
The partial solar eclipse on August 3, 2054 occurs in the next lunar year eclipse set.
Saros 155
This eclipse is a part of Saros series 155, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 17, 1928. It contains total eclipses from September 12, 2072 through August 30, 2649; hybrid eclipses from September 10, 2667 through October 2, 2703; and annular eclipses from October 13, 2721 through May 8, 3064. The series ends at member 71 as a partial eclipse on July 24, 3190. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality will be produced by member 14 at 4 minutes, 5 seconds on November 6, 2162, and the longest duration of annularity will be produced by member 63 at 5 minutes, 31 seconds on April 28, 3046. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads