Top Qs
Timeline
Chat
Perspective

Solar eclipse of September 2, 2035

Total eclipse From Wikipedia, the free encyclopedia

Solar eclipse of September 2, 2035
Remove ads

A total solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 2, 2035,[1] with a magnitude of 1.032. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days after perigee (on Thursday, August 30, 2035, at 3:35 UTC), the Moon's apparent diameter will be larger.[2]

Quick Facts Gamma, Magnitude ...

Totality will be visible from parts of northern China, North Korea, the extreme northern tip of South Korea (Goseong County, Gangwon Province) and Japan. A partial eclipse will be visible for most of Asia, northern Oceania, Hawaii, southwest Alaska, and the western United States.

Remove ads

Visibility

Thumb
Animation of the eclipse shadow. The dot in the center represents the path of totality.

The path of totality will cross two Asian capital cities, Beijing, China and Pyongyang, North Korea, and will pass north of a third, Tokyo, Japan.[3]

Eclipse timing

Places experiencing total eclipse

More information Country or territory, City or place ...

Places experiencing partial eclipse

More information Country or territory, City or place ...
Remove ads

The 2035 eclipse is the setting of the 2003 video game Castlevania: Aria of Sorrow. Dracula's castle is located inside the solar eclipse, having been sealed there in 1999.

Eclipse details

Summarize
Perspective

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[4]

More information Event, Time (UTC) ...
More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information August 19Descending node (full moon), September 2Ascending node (new moon) ...
Remove ads

Eclipses in 2035

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 145

Inex

Triad

Solar eclipses of 2033–2036

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The partial solar eclipse on July 23, 2036 occurs in the next lunar year eclipse set.

More information series sets from 2033 to 2036, Descending node ...

Saros 145

This eclipse is a part of Saros series 145, repeating every 18 years, 11 days, and containing 77 events. The series started with a partial solar eclipse on January 4, 1639. It contains an annular eclipse on June 6, 1891; a hybrid eclipse on June 17, 1909; and total eclipses from June 29, 1927 through September 9, 2648. The series ends at member 77 as a partial eclipse on April 17, 3009. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 15 at 6 seconds (by default) on June 6, 1891, and the longest duration of totality will be produced by member 50 at 7 minutes, 12 seconds on June 25, 2522. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

More information Series members 10–32 occur between 1801 and 2200: ...

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

More information 21 eclipse events between June 21, 1982 and June 21, 2058, June 21 ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...
Remove ads

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads