Top Qs
Timeline
Chat
Perspective

Strachey method for magic squares

From Wikipedia, the free encyclopedia

Remove ads

The Strachey method for magic squares is an algorithm for generating magic squares of singly even order 4k + 2. An example of magic square of order 6 constructed with the Strachey method:

More information Example ...

Strachey's method of construction of singly even magic square of order n = 4k + 2.

1. Divide the grid into 4 quarters each having n2/4 cells and name them crosswise thus

AC
DB

2. Using the Siamese method (De la Loubère method) complete the individual magic squares of odd order 2k + 1 in subsquares A, B, C, D, first filling up the sub-square A with the numbers 1 to n2/4, then the sub-square B with the numbers n2/4 + 1 to 2n2/4,then the sub-square C with the numbers 2n2/4 + 1 to 3n2/4, then the sub-square D with the numbers 3n2/4 + 1 to n2. As a running example, we consider a 10×10 magic square, where we have divided the square into four quarters. The quarter A contains a magic square of numbers from 1 to 25, B a magic square of numbers from 26 to 50, C a magic square of numbers from 51 to 75, and D a magic square of numbers from 76 to 100.

172418156774515865
235714167355576466
461320225456637072
1012192136062697153
111825296168755259
92997683904249263340
98808289914830323941
79818895972931384547
85879496783537444628
869310077843643502734

3. Exchange the leftmost k columns in sub-square A with the corresponding columns of sub-square D.

929918156774515865
9880714167355576466
79811320225456637072
8587192136062697153
869325296168755259
17247683904249263340
2358289914830323941
468895972931384547
10129496783537444628
111810077843643502734

4. Exchange the rightmost k - 1 columns in sub-square C with the corresponding columns of sub-square B.

929918156774515840
9880714167355576441
79811320225456637047
8587192136062697128
869325296168755234
17247683904249263365
2358289914830323966
468895972931384572
10129496783537444653
111810077843643502759

5. Exchange the middle cell of the leftmost column of sub-square A with the corresponding cell of sub-square D. Exchange the central cell in sub-square A with the corresponding cell of sub-square D.

929918156774515840
9880714167355576441
4818820225456637047
8587192136062697128
869325296168755234
17247683904249263365
2358289914830323966
7961395972931384572
10129496783537444653
111810077843643502759

The result is a magic square of order n=4k + 2.[1]

Remove ads

References

See also

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads