Ten-of-diamonds decahedron

From Wikipedia, the free encyclopedia

Ten-of-diamonds decahedron

In geometry, the ten-of-diamonds decahedron is a space-filling polyhedron with 10 faces, 2 opposite rhombi with orthogonal major axes, connected by 8 identical isosceles triangle faces. Although it is convex, it is not a Johnson solid because its faces are not composed entirely of regular polygons. Michael Goldberg named it after a playing card, as a 10-faced polyhedron with two opposite rhombic (diamond-shaped) faces. He catalogued it in a 1982 paper as 10-II, the second in a list of 26 known space-filling decahedra.[1]

Quick Facts Faces, Edges ...
Ten-of-diamonds decahedron
Faces8 triangles
2 rhombi
Edges16
Vertices8
Symmetry groupD2d, order 8
Dual polyhedronSkew-truncated tetragonal disphenoid
Propertiesspace-filling
Close

Coordinates

If the space-filling polyhedron is placed in a 3-D coordinate grid, the coordinates for the 8 vertices can be given as: (0, ±2, −1), (±2, 0, 1), (±1, 0, −1), (0, ±1, 1).

Thumb

Symmetry

The ten-of-diamonds has D2d symmetry, which projects as order-4 dihedral (square) symmetry in two dimensions. It can be seen as a triakis tetrahedron, with two pairs of coplanar triangles merged into rhombic faces. The dual is similar to a truncated tetrahedron, except two edges from the original tetrahedron are reduced to zero length making pentagonal faces. The dual polyhedra can be called a skew-truncated tetragonal disphenoid, where 2 edges along the symmetry axis completely truncated down to the edge midpoint.

More information Related, Dual ...
Symmetric projection
Ten of diamonds Related Dual Related
Thumb
Solid faces
Thumb
Edges
Thumb
triakis tetrahedron
Thumb
Solid faces
Thumb
Edges
Thumb
Truncated tetrahedron
v=8, e=16, f=10 v=8, e=18, f=12 v=10, e=16, f=8 v=12, e=18, f=8
Close

Honeycomb

Ten-of-diamonds honeycomb
Schläfli symboldht1,2{4,3,4}
Coxeter diagram
CellTen-of-diamonds
Thumb
Vertex figuresdodecahedron
tetrahedron
Space
Fibrifold
Coxeter
I3 (204)
8−o
[[4,3+,4]]
DualAlternated bitruncated cubic honeycomb
PropertiesCell-transitive

The ten-of-diamonds is used in the honeycomb with Coxeter diagram , being the dual of an alternated bitruncated cubic honeycomb, . Since the alternated bitruncated cubic honeycomb fills space by pyritohedral icosahedra, , and tetragonal disphenoidal tetrahedra, vertex figures of this honeycomb are their duals – pyritohedra, and tetragonal disphenoids.

Cells can be seen as the cells of the tetragonal disphenoid honeycomb, , with alternate cells removed and augmented into neighboring cells by a center vertex. The rhombic faces in the honeycomb are aligned along 3 orthogonal planes.

More information Uniform, Dual ...
Uniform Dual Alternated Dual alternated

t1,2{4,3,4}

dt1,2{4,3,4}

ht1,2{4,3,4}

dht1,2{4,3,4}
Thumb
Bitruncated cubic honeycomb of truncated octahedral cells
Thumb
tetragonal disphenoid honeycomb
ThumbDual honeycomb of icosahedra and tetrahedra Thumb
Ten-of-diamonds honeycomb
Thumb
Honeycomb structure orthogonally viewed along cubic plane
Close
Summarize
Perspective

The ten-of-diamonds can be dissected in an octagonal cross-section between the two rhombic faces. It is a decahedron with 12 vertices, 20 edges, and 10 faces (4 triangles, 4 trapezoids, 1 rhombus, and 1 isotoxal octagon). Michael Goldberg labels this polyhedron 10-XXV, the 25th in a list of space-filling decahedra.[2]

The ten-of-diamonds can be dissected as a half-model on a symmetry plane into a space-filling heptahedron with 6 vertices, 11 edges, and 7 faces (6 triangles and 1 trapezoid). Michael Goldberg identifies this polyhedron as a triply truncated quadrilateral prism, type 7-XXIV, the 24th in a list of space-fillering heptahedra.[3]

It can be further dissected as a quarter-model by another symmetry plane into a space-filling hexahedron with 6 vertices, 10 edges, and 6 faces (4 triangles, 2 right trapezoids). Michael Goldberg identifies this polyhedron as an ungulated quadrilateral pyramid, type 6-X, the 10th in a list of space-filling hexahedron.[4]

More information Relation, Decahedral half model ...
Dissected models in symmetric projections
Relation Decahedral
half model
Heptahedral
half model
Hexahedral
quarter model
Symmetry C2v, order 4 Cs, order 2 C2, order 2
Edges Thumb Thumb Thumb
Net Thumb Thumb Thumb
Elements v=12, e=20, f=10 v=6, e=11, f=7 v=6, e=10, f=6
Close

Rhombic bowtie

Quick Facts Rhombic bowtie, Faces ...
Rhombic bowtie
Thumb
Faces16 triangles
2 rhombi
Edges28
Vertices12
Symmetry groupD2h, order 8
Propertiesspace-filling
Net
Thumb
Close

Pairs of ten-of-diamonds can be attached as a nonconvex bow-tie space-filler, called a rhombic bowtie for its cross-sectional appearance. The two right-most symmetric projections below show the rhombi edge-on on the top, bottom and a middle neck where the two halves are connected. The 2D projections can look convex or concave.

It has 12 vertices, 28 edges, and 18 faces (16 triangles and 2 rhombi) within D2h symmetry. These paired-cells stack more easily as inter-locking elements. Long sequences of these can be stacked together in 3 axes to fill space.[5]

The 12 vertex coordinates in a 2-unit cube. (further augmentations on the rhombi can be done with 2 unit translation in z.)

(0, ±1, −1), (±1, 0, 0), (0, ±1, 1),
(±1/2, 0, −1), (0, ±1/2, 0), (±1/2, 0, 1)
More information Skew, Symmetric ...
Bow-tie model (two ten-of-diamonds)
SkewSymmetric
Thumb Thumb Thumb Thumb Thumb
Close

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.