Top Qs
Timeline
Chat
Perspective

Truncated order-6 hexagonal tiling

From Wikipedia, the free encyclopedia

Truncated order-6 hexagonal tiling
Remove ads

In geometry, the truncated order-6 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{6,6}. It can also be identically constructed as a cantic order-6 square tiling, h2{4,6}

Truncated order-6 hexagonal tiling
Thumb
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration6.12.12
Schläfli symbolt{6,6} or h2{4,6}
t(6,6,3)
Wythoff symbol2 6 | 6
3 6 6 |
Coxeter diagram =
=
Symmetry group[6,6], (*662)
[(6,6,3)], (*663)
DualOrder-6 hexakis hexagonal tiling
PropertiesVertex-transitive
Remove ads

Uniform colorings

By *663 symmetry, this tiling can be constructed as an omnitruncation, t{(6,6,3)}:

Thumb

Symmetry

Thumb
Truncated order-6 hexagonal tiling with *663 mirror lines

The dual to this tiling represent the fundamental domains of [(6,6,3)] (*663) symmetry. There are 3 small index subgroup symmetries constructed from [(6,6,3)] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.

The symmetry can be doubled as 662 symmetry by adding a mirror bisecting the fundamental domain.

More information Index, Diagram ...
Remove ads
More information Symmetry: [6,6], (*662), Uniform duals ...

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads