Top Qs
Timeline
Chat
Perspective
Whitney topologies
Topologies defined on the set of smooth mappings between manifolds From Wikipedia, the free encyclopedia
Remove ads
In mathematics, and especially differential topology, functional analysis and singularity theory, the Whitney topologies are a countably infinite family of topologies defined on the set of smooth mappings between two smooth manifolds. They are named after the American mathematician Hassler Whitney.
Construction
Summarize
Perspective
Let M and N be two real, smooth manifolds. Furthermore, let C∞(M,N) denote the space of smooth mappings between M and N. The notation C∞ means that the mappings are infinitely differentiable, i.e. partial derivatives of all orders exist and are continuous.[1]
Whitney Ck-topology
For some integer k ≥ 0, let Jk(M,N) denote the k-jet space of mappings between M and N. The jet space can be endowed with a smooth structure (i.e. a structure as a C∞ manifold) which make it into a topological space. This topology is used to define a topology on C∞(M,N).
For a fixed integer k ≥ 0 consider an open subset U ⊂ Jk(M,N), and denote by Sk(U) the following:
The sets Sk(U) form a basis for the Whitney Ck-topology on C∞(M,N).[2]
Whitney C∞-topology
For each choice of k ≥ 0, the Whitney Ck-topology gives a topology for C∞(M,N); in other words the Whitney Ck-topology tells us which subsets of C∞(M,N) are open sets. Let us denote by Wk the set of open subsets of C∞(M,N) with respect to the Whitney Ck-topology. Then the Whitney C∞-topology is defined to be the topology whose basis is given by W, where:[2]
Remove ads
Dimensionality
Summarize
Perspective
Notice that C∞(M,N) has infinite dimension, whereas Jk(M,N) has finite dimension. In fact, Jk(M,N) is a real, finite-dimensional manifold. To see this, let ℝk[x1,...,xm] denote the space of polynomials, with real coefficients, in m variables of order at most k and with zero as the constant term. This is a real vector space with dimension
Writing a = dim{ℝk[x1,...,xm]} then, by the standard theory of vector spaces ℝk[x1,...,xm] ≅ ℝa, and so is a real, finite-dimensional manifold. Next, define:
Using b to denote the dimension Bkm,n, we see that Bkm,n ≅ ℝb, and so is a real, finite-dimensional manifold.
In fact, if M and N have dimension m and n respectively then:[3]
Remove ads
Topology
Given the Whitney C∞-topology, the space C∞(M,N) is a Baire space, i.e. every residual set is dense.[4]
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads