Top Qs
Timeline
Chat
Perspective

Grigori Perelman

Russian mathematician (born 1966) From Wikiquote, the free quote compendium

Remove ads

Grigori Yakovlevich Perelman (born 13 June 1966) is a Russian mathematician who is known for his contributions to the fields of geometric analysis, Riemannian geometry, and geometric topology. In 1994, he proved the soul conjecture in Riemannian geometry, which had been an open problem for the previous 20 years. In 2002 and 2003, he developed new techniques in the analysis of Ricci flow, thereby providing a detailed sketch of a proof of the Poincaré conjecture and Thurston's geometrization conjecture, the former of which had been a famous open problem in mathematics for the past century.

Remove ads

Quotes

Quotes about Grigori Perelman

  • By the end of 2006 it was generally believed that Perelman’s proof was correct. That year, the journal Science named Perelman’s proof the “Breakthrough of the Year.” Like Smale and Freedman before him, the forty-year old Perelman was tapped to be a Fields Medals recipient for his contributions to the Poincaré conjecture (in fact, Thurston also received a Fields Medal for his work that indirectly led to the final proof). The countdown for the $1 million prize had begun (some wonder if Perelman and Hamilton will be offered the prize jointly).
  • Revolutions in mathematics are quiet affairs. No clashing armies and no guns. Brief news stories far from the front page. Unprepossessing. Just like the raw damp Monday afternoon of April 7, 2003, in Cambridge, Massachusetts. Young and old crowded the lecture theater at the Massachusetts Institute of Technology (MIT). They sat on the floor and in the aisles, and stood at the back. The speaker, Russian mathematician Grigory Perelman, wore a rumpled dark suit and sneakers, and paced while he was introduced.
Remove ads
Wikipedia has an article about:

Mathematics
Mathematicians
(by country)

Abel Anaxagoras Archimedes Aristarchus of Samos Averroes Arnold Banach Cantor Cartan Chern Cohen Descartes Diophantus Erdős Euclid Euler Fourier Gauss Gödel Grassmann Grothendieck Hamilton Hilbert Hypatia Lagrange Laplace Leibniz Milnor Newton von Neumann Noether Penrose Perelman Poincaré Pólya Pythagoras Riemann Russell Schwartz Serre Tao Tarski Thales Turing Weil Weyl Wiles Witten

Numbers

1 23 360 e π Fibonacci numbers Irrational number Negative number Number Prime number Quaternion Octonion

Concepts

Abstraction Algorithms Axiomatic system Completeness Deductive reasoning Differential equation Dimension Ellipse Elliptic curve Exponential growth Infinity Integration Geodesic Induction Proof Partial differential equation Principle of least action Prisoner's dilemma Probability Randomness Theorem Topological space Wave equation

Results

Euler's identity Fermat's Last Theorem

Pure math

Abstract algebra Algebra Analysis Algebraic geometry (Sheaf theory) Algebraic topology Arithmetic Calculus Category theory Combinatorics Commutative algebra Complex analysis Differential calculus Differential geometry Differential topology Ergodic theory Foundations of mathematics Functional analysis Game theory Geometry Global analysis Graph theory Group theory Harmonic analysis Homological algebra Invariant theory Logic Non-Euclidean geometry Nonstandard analysis Number theory Numerical analysis Operations research Representation theory Ring theory Set theory Sheaf theory Statistics Symplectic geometry Topology

Applied math

Computational fluid dynamics Econometrics Fluid mechanics Mathematical physics Science

History of math

Ancient Greek mathematics Euclid's Elements History of algebra History of calculus History of logarithms Indian mathematics Principia Mathematica

Other

Mathematics and mysticism Mathematics education Mathematics, from the points of view of the Mathematician and of the Physicist Philosophy of mathematics Unification in science and mathematics


Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads