Top Qs
Timeline
Chat
Perspective

Π

constant ratio of the circumference of a circle to its diameter From Wikiquote, the free quote compendium

Remove ads

π is a mathematical constant whose value is the ratio of any circle's circumference to its diameter in Euclidean space; this is the same value as the ratio of a circle's area to the square of its radius. π is a transcendental number, approximately equal to 3.14159265358979 in the usual decimal notation.

Quotes

  • Historically [analytic geometry] arose... from the comparison of curvilinear and rectilinear magnitudes. ...the Egyptians and Babylonians, in their geometry of the circle, took the first steps. The former made a remarkably accurate estimate of the ratio of the area of the circle to the area of the square on the diameter, taking the ratio to be , equivalent to taking a value of about 3.16 for . The Babylonians adopted the cruder approximation 3... (although an instance is known in which the value is taken as ), but... recognized that the angle inscribed in a semicircle is right, anticipating Thales by well over a thousand years. Moreover, they were familiar... with the Pythagorean theorem.
  • Maths is really hard to define. ...Except I like to define maths as this
    This formula, which links to the odd numbers... It's true. It's always been there. It's absolutely wonderful. It connects odd numbers to the ratio of a circle, and... if you don't like that, then you have no mathematical soul.
  • Something's going on. It has to do with that number. There's an answer in that number.
  • One of the most frequently mentioned equations was Euler's equation, Respondents called it "the most profound mathematical statement ever written"; "uncanny and sublime"; "filled with cosmic beauty"; and "mind-blowing". Another asked: "What could be more mystical than an imaginary number interacting with real numbers to produce nothing?" The equation contains nine basic concepts of mathematics — once and only once — in a single expression. These are: e (the base of natural logarithms); the exponent operation; π; plus (or minus, depending on how you write it); multiplication; imaginary numbers; equals; one; and zero.
  • Among his [John Wallis'] interesting discoveries was the relation
       
    one of the early values of π involving infinite products.
    • David Eugene Smith, History of Mathematics (1923) Vol.1; Footnote: see his Opera Mathematica, I, 441
Remove ads
Wikipedia has an article about:
Wikimedia Commons has media related to:

π Day

Wikipedia has an article about:
Wikimedia Commons has media related to:

Mathematics
Mathematicians
(by country)

Abel Anaxagoras Archimedes Aristarchus of Samos Averroes Arnold Banach Cantor Cartan Chern Cohen Descartes Diophantus Erdős Euclid Euler Fourier Gauss Gödel Grassmann Grothendieck Hamilton Hilbert Hypatia Lagrange Laplace Leibniz Milnor Newton von Neumann Noether Penrose Perelman Poincaré Pólya Pythagoras Riemann Russell Schwartz Serre Tao Tarski Thales Turing Weil Weyl Wiles Witten

Numbers

1 23 360 e π Fibonacci numbers Irrational number Negative number Number Prime number Quaternion Octonion

Concepts

Abstraction Algorithms Axiomatic system Completeness Deductive reasoning Differential equation Dimension Ellipse Elliptic curve Exponential growth Infinity Integration Geodesic Induction Proof Partial differential equation Principle of least action Prisoner's dilemma Probability Randomness Theorem Topological space Wave equation

Results

Euler's identity Fermat's Last Theorem

Pure math

Abstract algebra Algebra Analysis Algebraic geometry (Sheaf theory) Algebraic topology Arithmetic Calculus Category theory Combinatorics Commutative algebra Complex analysis Differential calculus Differential geometry Differential topology Ergodic theory Foundations of mathematics Functional analysis Game theory Geometry Global analysis Graph theory Group theory Harmonic analysis Homological algebra Invariant theory Logic Non-Euclidean geometry Nonstandard analysis Number theory Numerical analysis Operations research Representation theory Ring theory Set theory Sheaf theory Statistics Symplectic geometry Topology

Applied math

Computational fluid dynamics Econometrics Fluid mechanics Mathematical physics Science

History of math

Ancient Greek mathematics Euclid's Elements History of algebra History of calculus History of logarithms Indian mathematics Principia Mathematica

Other

Mathematics and mysticism Mathematical Platonism Mathematics education Mathematics, from the points of view of the Mathematician and of the Physicist Philosophy of mathematics Unification in science and mathematics


Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads