For faster navigation, this Iframe is preloading the Wikiwand page for Malfermita aro.

Malfermita aro

El Vikipedio, la libera enciklopedio

En topologio kaj rilatantaj kampoj de matematiko, aro U estas nomata kiel malfermita se, oni povas movi ĉiun punkton x el U per malfinie malgrando movo en ĉiu direkto kaj la punkto denove estos ene de U. En aliaj vortoj, se x estas ĉirkaŭbarita nur per eroj de U; ĝi ne povas esti sur rando de U.

Kiel tipa ekzemplo, konsideru la malfermita intervalon ]0,1[ konsistantan el ĉiuj reelaj nombroj x : 0 < x < 1. Ĉi tie, la topologio estas kiel la kutima topologio sur la reela linio. Se oni movos ĉi tiun punkton x iom malmulte, tiam la movita versio estos ankoraŭ nombro inter 0 kaj 1, se la movo estas ne tro granda. Pro tio, la intervalo ]0,1[ estas malfermita. Tamen, la intervalo ]0,1] konsistanta de ĉiuj nombroj x kun 0 < x ≤ 1 estas ne malfermita; se oni prenas x = 1 kaj movas ĝin eĉ malmulte en la pozitiva direkto, ĝi estos ekster (0,1].

Ni notu ankaŭ ke malfermita ne estas la kontraŭo de fermita" (fermita aro estas la komplemento de malfermita aro).

Vidu ankaŭ


Ĉi tiu artikolo enhavas dume forkomentitajn partojn de la teksto, ĉar ili ankoraŭ ne estas sufiĉe bonaj. Vi povas redakti la paĝon kaj plibonigi kaj malkomenti la forkomentitajn partojn.
{{bottomLinkPreText}} {{bottomLinkText}}
Malfermita aro
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.