Top Qs
Línea de tiempo
Chat
Contexto

Reactor de investigación

reactor nuclear que sirve principalmente como fuente de neutrones De Wikipedia, la enciclopedia libre

Reactor de investigación
Remove ads

Los reactores de investigación son instalaciones de fisión basadas en reactores nucleares que sirven principalmente como fuente de neutrones. También se les llama reactores sin potencia, a diferencia de los reactores que se utilizan para la producción de electricidad, la generación de calor o la propulsión marina.

Thumb
El reactor de investigación CROCUS de la Escuela Politécnica Federal de Lausana, en Suiza
Remove ads

Propósito

Los neutrones producidos por un reactor de investigación se utilizan para ensayos de dispersión de neutrones; pruebas no destructivas; análisis y ensayo de materiales; producción de radioisótopos; y educación y divulgación pública. Aquellas instalaciones que producen radioisótopos para uso médico o industrial a veces se denominan reactores de isótopos. Los reactores que están optimizados para experimentos de haces en línea compiten con las instalaciones de generación de neutrones por espalación.

Remove ads

Aspectos técnicos

Los reactores de investigación son más simples que los reactores de potencia y funcionan a temperaturas más bajas. Necesitan mucho menos combustible y se acumulan muchos menos productos de la fisión nuclear a medida que se utiliza el combustible. Por otro lado, su combustible requiere más uranio altamente enriquecido, por lo general hasta un 20% de U-235,[1] aunque algunos modelos requieren hasta el 93% de U-235. Si bien el enriquecimiento al 20% generalmente no se considera utilizable en armas nucleares, el 93% se conoce comúnmente como de "grado de armamento". También tienen una densidad de potencia muy alta en el núcleo, lo que requiere características de diseño especiales. Al igual que los reactores de potencia, el núcleo necesita enfriamiento, típicamente por convección natural o forzado con agua, y se requiere un material moderador para disminuir la velocidad de los neutrones y mejorar la fisión. Como la producción de neutrones es su función principal, la mayoría de los reactores de investigación emplean reflectores para reducir la pérdida de neutrones del núcleo.

Remove ads

Conversión a funcionamiento con uranio poco enriquecido

Resumir
Contexto

El Organismo Internacional de la Energía Atómica y el Departamento de Energía de los Estados Unidos iniciaron un programa en 1978 para desarrollar medios para convertir los reactores de investigación que utilizaban uranio altamente enriquecido (UAE) para que pudieran usar uranio poco enriquecido (UPE), en apoyo de su política de no proliferación de armas nucleares.[2][3] Para entonces, Estados Unidos había suministrado reactores de investigación con uranio altamente enriquecido a 41 países como parte de su programa Átomos para la Paz. En 2004, el Departamento de Energía de Estados Unidos amplió su programa de Aceptación del combustible nuclear gastado en reactores de investigación en el extranjero hasta 2019.[4]

En 2016, un informe de las Academias Nacionales de Ciencias, Ingeniería y Medicina concluyó que la conversión de todos los reactores de investigación al uso de uranio poco enriquecido no se puede completar hasta 2035 como muy pronto. En parte, esto se debe a que el desarrollo de combustible poco enriquecido fiable para reactores de investigación con alto flujo de neutrones, que no sea susceptible a fallos por inflamación, ha sido más lento de lo esperado.[5] En el año 2020 todavía quedaban 72 reactores de investigación de uranio altamente enriquecido.[6]

Diseñadores y constructores

Si bien en las décadas de 1950, 1960 y 1970 había varias empresas especializadas en el diseño y construcción de reactores de investigación, la actividad de este mercado se enfrió posteriormente, y muchas compañías abandonaron esta actividad.

El mercado se ha consolidado hoy en unas pocas empresas que concentran los proyectos clave a nivel mundial.

La licitación internacional más reciente (1999) para un reactor de investigación fue la organizada por la Australian Nuclear Science and Technology Organisation para el diseño, construcción y puesta en servicio del reactor OPAL. Fueron precalificadas cuatro empresas: Atomic Energy of Canada Limited (AECL), INVAP, Siemens AG y Technicatom. El proyecto fue adjudicado a INVAP, que construyó el reactor. En los últimos años, AECL se retiró de este mercado y las actividades de Siemens y Technicatom se fusionaron en la compañía Areva.

Remove ads

Clases de reactores de investigación

  • Reactor acuoso homogéneo
  • Reactor clase Argonaut
  • Clase DIDO, seis reactores de alto flujo en todo el mundo
  • TRIGA, una clase de gran éxito con más de 50 instalaciones en todo el mundo
  • Clase del reactor SLOWPOKE, desarrollada por AECL, Canadá
  • Clase del reactor OPAL, desarrollada por INVAP, Argentina
  • Reactor de fuente de neutrones en miniatura, basado en el diseño SLOWPOKE, desarrollado por AECL, actualmente exportado por China
  • Aerojet General Nucleonics, Modelos 201. Desarrollado por Aerojet General en Estados Unidos. En la década de 2020 había tres de estos reactores en funcionamiento: en la Universidad Estatal de Idaho, en la Universidad de Nuevo México y en la Universidad de Texas A&M.
Remove ads

Centros de investigación

Resumir
Contexto

Puede encontrarse una lista completa en el artículo Anexo:Reactores de investigación nuclear. Centros de investigación que operan un reactor:

Más información Nombre del reactor, País ...

Reactores de investigación fuera de servicio:

Más información Nombre del reactor, País ...
Remove ads

Referencias

Bibliografía

Enlaces externos

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads