Top Qs
Línea de tiempo
Chat
Contexto
Teselado cuadrado
teselado del plano formado por cuadrados De Wikipedia, la enciclopedia libre
Remove ads
En geometría, un teselado cuadrado, mosaico cuadrado o cuadrícula cuadrada es un teselado regular bidimensional. Tiene símbolo de Schläfli {4,4}, lo que significa que tiene 4 cuadrados alrededor de cada vértice.
Conway lo llamó cuadrilla.
El ángulo interior del cuadrado es de 90 grados, por lo que cuatro cuadrados en un punto hacen 360 grados completos. Es uno de tres mosaicos regulares del plano. Los otros dos son el teselado triangular y el teselado hexagonal.
Remove ads
Coloraciones uniformes
Hay 9 coloreados uniformes distintos de un teselado cuadrado. Nombrando los colores por índices en los 4 cuadrados alrededor de un vértice, se obtienen las combinaciones siguientes: 1111, 1112(i), 1112(ii), 1122, 1123(i), 1123(ii), 1212, 1213, 1234. Los casos marcados con (i) tienen simetría de reflexión simple, y los marcados con (ii) poseen simetría de reflexión deslizada. Se pueden ver tres en el mismo dominio de simetría como colores reducidos: 1112i de 1213, 1123i de 1234 y 1112ii reducido de 1123ii.
Remove ads
Poliedros y mosaicos relacionados
Resumir
Contexto
Este mosaico está relacionado topológicamente como parte de una secuencia de poliedros y mosaicos regulares, que se extiende hasta plano hiperbólico: {4,p}, p=3,4,5...
Este mosaico también está relacionado topológicamente como parte de la secuencia de poliedros regulares y mosaicos con cuatro caras por vértice, comenzando con octaedro, con Símbolo de Schläfli {n,4} y el diagrama de Coxeter , con n progresando hasta el infinito.
Remove ads
Construcciones de Wythoff a partir de teselados cuadrados
Al igual que los poliedros uniformes, hay ocho teselados uniformes que se pueden basar en el teselado cuadrado regular.
Dibujando los teselados coloreados como rojo en las caras originales, amarillo en los vértices originales y azul en los bordes originales, las 8 formas son distintas. Sin embargo, al tratar las caras de manera idéntica, solo hay tres formas topológicamente distintas: el teselado cuadrado, el teselado cuadrado truncado y el teselado cuadrado achatado.
Teselaciones topológicamente equivalentes
Resumir
Contexto


Se pueden hacer otros teselados con cuadriláteros que son topológicamente equivalentes al mosaico cuadrado (con 4 cuadrángulos alrededor de cada vértice).

Los mosaicos isoédricos tienen caras idénticas (face-transitivity) y vertex-transitivity, hay 18 variaciones, con 6 identificadas como triángulos que no se conectan de borde a borde, o como cuadrilátero con dos bordes colineales. La simetría dada asume que todas las caras son del mismo color.[1]
Remove ads
Empaquetamiento de círculos
El teselado cuadrado se puede usar como un empaquetamiento de círculos, colocando círculos de igual diámetro en el centro de cada cuadrado. De esta forma, cada círculo está en contacto con otros 4 círculos en el empaquetamiento (número de osculación).[2] La densidad de empaquetamiento tiene una cobertura de π/4=78,54%. Hay 4 colores uniformes de los empaquetamientos circulares.
Apeirógonos complejos regulares relacionados
Hay 3 apeirógonos complejos regulares que comparten los vértices del teselado cuadrado. Los apeirogonos complejos regulares tienen vértices y aristas, donde las aristas pueden contener 2 o más vértices. Los apeirógonos regulares p{q}r están restringidos por: 1/p + 2/q + 1/r = 1. Las aristas tienen p vértices, y las figuras de vértice son r-gonales.[3]
Remove ads
Véase también
- Tablero de damas
- Retícula cuadrada
- Teselado regular
- Anexo:Politopos regulares
- Anexo:Teselados uniformes
Referencias
Bibliografía
Enlaces externos
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads