Top Qs
Chronologie
Chat
Contexte

Méthode de Hückel

De Wikipédia, l'encyclopédie libre

Méthode de Hückel
Remove ads

La méthode de Hückel ou méthode d'orbitales moléculaires de Hückel (HMO pour Hückel molecular orbital method), proposée par Erich Hückel en 1930, est une méthode de CLOA pour déterminer les énergies des orbitales moléculaires des électrons π dans les systèmes d'hydrocarbures conjugués, comme l'éthylène, le benzène ou encore le buta-1,3-diène[1],[2]. Elle constitue la base théorique de la règle de Hückel; la méthode de Hückel étendue développée par Roald Hoffmann est elle la base des règles de Woodward–Hoffmann[3]. Elle a été plus tard étendue à des molécules conjuguées comme la pyridine, le pyrrole et le furane contenant des atomes autres que le carbone, dénommés dans ce contexte comme hétéroatomes[4].
Cette méthode figure dans de nombreux ouvrages comme un outil pédagogique pour l'introduction à la chimie théorique.

Thumb
La forme de la molécule de benzène
Remove ads

Caractéristiques de la méthode

Cette méthode possède plusieurs caractéristiques :

Remove ads

Résultats de la méthode

Résumé
Contexte

Quelques résultats pour des molécules simples sont tabulés ci-dessous.

MoléculeÉnergieOrbitale frontièreDifférence d'énergie HO - BV
ÉthylèneE1 = α - βBV-2β
E2 = α + βHO
Buta-1,3-dièneE1 = α + 1,62β
E2 = α + 0,62βHO-1,24β
E3 = α - 0,62βBV
E4 = α - 1,62β
BenzèneE1 = α + 2β
E2 = α + β
E3 = α + βHO-2β
E4 = α - βBV
E5 = α - β
E6 = α - 2β
CyclobutadièneE1 = α + 2β
E2 = αHO0
E3 = αHO
E4 = α - 2β
Tableau 1. Résultats de la méthode de Hückel
Les deux énergies les plus basses sur les α et β du haut sont toutes deux négatives[5].

La théorie prédit deux niveaux d'énergie pour l'éthylène, avec deux électrons π remplissant l'orbitale HO de basse énergie et l'orbitale BV de haute énergie reste vide. Dans le butadiène, les quatre électrons π occupent deux orbitales moléculaires de basses énergies sur un total de quatre et pour le benzène, six niveaux d'énergies sont prédits dont deux dégénérés.
Pour les systèmes linéaires et cycliques (avec n atomes), des solutions générales existent[6].

Linéaire:

Cyclique:

De nombreuses prédictions ont été expérimentalement vérifiées :

à partir de laquelle une valeur de β peut être obtenue entre -60 et -70 kcal/mole [7].
  • les énergies des orbitales moléculaires prédites sont indiquées par le théorème de Koopmans corrélé avec la spectroscopie photoélectronique[8].
  • l'énergie de délocalisation de Hückel est corrélée avec l'enthalpie de combustion. Cette énergie est définie comme la différence entre l'énergie π totale prédite (dans le benzène, 8β) et une énergie π hypothétique pour laquelle toutes les unités éthylène sont considérées comme isolées et contribuant chacune pour 2β (soit pour le benzène, 3×2 = 6β).
  • les molécules avec des orbitales couplées telles que seul leur signe diffère (par exemple α+/-β) sont appelés hydrocarbures alternés et ont en commun de faibles moments dipolaires. Ils contrastent avec les hydrocarbures non-alternés comme l'azulène ou le fulvène avec de forts moments. Le modèle de Hückel est plus précise pour les hydrocarbures alternés.
  • pour le cyclobutadiène, le modèle prédit que les deux électrons de haute énergie occupent une paire dégénérée d'orbitales moléculaires qui ne sont ni stables, ni instables. Ainsi, la molécule carrée serait un diradical triplet très réactif (l'état fondamental est en réalité rectangulaire sans orbitales dégénérées). En fait, tous les hydrocarbures cycliques conjugués avec un total de 4n électrons π montrent ce type d'orbitales moléculaires et forment une base de la règle de Hückel.
Remove ads

Quelques mathématiques utilisées dans la méthode de Hückel

La méthode de Hückel peut être dérivée de la méthode de Ritz avec quelques postulats supplémentaires concernant la matrice de recouvrement S et la matrice de Hamilton H. Il est donc postulé que la matrice de recouvrement S est la matrice identité. Ceci signifie que le recouvrement des orbitales est négligé et que les orbitales sont considérées comme orthogonales. Donc le problème des valeurs propres généralisées de la méthode de Ritz devient un problème simple de valeurs propres.

La matrice de Hamilton H = (Hij) est paramétrée de la manière suivante :

  • Hii = α pour les atomes de carbone et α + hA β pour les autres atomes A.
  • Hij = β si les deux atomes sont liés et tous deux des atomes C, et kAB β pour les autres atomes voisins A et B.
  • Hij = 0 dans tous les autres cas.

Les orbitales sont les vecteurs propres et les énergies les valeurs propres de la matrice hamiltonienne. Si le composé est un hydrocarbure pur, le problème peut être résolu sans autre connaissance sur les paramètres. Pour les systèmes hétéroatomiques, comme la pyridine, des valeurs de hA et kAB doivent être spécifiés.

Exemple de l'éthène

Résumé
Contexte

Dans le traitement selon Hückel de l'éthylène[9], l'orbitale moléculaire est une combinaison linéaire des orbitales atomiques 2p des atomes de carbone avec les coefficients :

Cette équation est alors introduite dans l'équation de Schrödinger :

est le hamiltonien et l'énergie correspondant à l'orbitale moléculaire.

L'équation est alors multipliée par (puis par ) et intégrée afin de donner l'ensemble d'équations :

 :

Les hamiltoniens entièrement diagonaux sont appelés intégrales de Coulomb et ceux de type où les atomes i et j sont liés des intégrales de résonance avec les relations suivantes :

Un autre des postulats sont que l'intégrale de recouvrement entre deux orbitales atomiques est nulle :

Ceci conduit à deux équations homogènes :

avec un total de cinq variables. Après avoir converti cet ensemble en notation matricielle:

La solution triviale fournit les deux coefficients des fonctions d'ondes c égaux à zéro, ce qui n'est pas extrêmement utile pour la résolution. L'autre solution non triviale est :

qui peut être résolue en développant son déterminant:

ou

et

Après normalisation, les coefficients sont obtenus :

La constante β dans le terme d'énergie est négatif et ainsi α + β est l'énergie la plus basse, correspondant à l'orbitale la plus haute occupée (HO) et α - β à la plus basse vacante (BV).

Remove ads

Références

Pour approfondir

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads