Un corollaire du théorème de Sophie Germain est que pour ces nombres premiers, un cas particulier du dernier théorème de Fermat (le «premier cas») est vrai, c'est-à-dire qu'il n'existe pas d'entiers x, y, z tous trois non divisibles par G tels que xG + yG = zG.
Il est conjecturé qu'il existe une infinité de nombres premiers de Sophie Germain; cependant, comme pour la conjecture des nombres premiers jumeaux, cela n'a pour le moment pas été démontré.
Remove ads
Listes de nombres premiers de Sophie Germain
Résumé
Contexte
Les quarante-cinq premiers nombres premiers de Sophie Germain sont (voir suite A005384 de l'OEIS):
Ils sont classés dans les deux tableaux ci-dessous, ordonnés sous la forme Gi inscrite en gras sous leur occurrence dans la liste complète des nombres premiers p, associés à leur nombre premier sûr noté Si = 2Gi + 1 dans la case immédiatement au-dessous.
Nombres premiers de Sophie Germain compris entre 0 et 127
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.
Les seize nombres premiers de Sophie Germain G compris entre 2 et 127 sont présentés dans le tableau 1 ci-dessous. À partir de 131, les nombres premiers ordinaires p intermédiaires ne sont plus indiqués.
Davantage d’informations décades d'entiers n, première décade ...
Tableau 1: Tous les nombres premiers p compris entre 0 et 127, dont les premiers de Sophie Germain G; leurs premiers sûrs résultants S = 2G + 1.
- A1 - 25 soit 25% de nombres premiersp parmi les 100 entiers n compris entre 0 et 99, à comparer à:
10 soit 10% de nombres premiers de Sophie Germain G parmi les 100 entiers n compris entre 0 et 99.
7 soit 7% de nombres premiers sûrs S parmi les 100 entiers n compris entre 0 et 99.
- A2 - 46 soit 23% de nombres premiers «p» parmi les 200 entiers n compris entre 0 et 199, à comparer à:
15 soit 7,5% de nombres premiers de Sophie Germain G parmi les 200 entiers «n» compris entre 0 et 199.
10 soit 5% de nombres premiers sûrs S dilués parmi les 200 entiers n compris entre 0 et 199.
Totaux et ratios B
- B1 - 31 soit 24% de nombres premiersp parmi les 128 entiers n compris entre 0 et 127, à comparer à:
11 soit 8,6% de nombres premiers de Sophie Germain G parmi les 128 entiers n compris entre 0 et 127.
8 soit 6,25% de nombres premiers sûrs S parmi les 128 entiers «n» compris entre 0 et 127.
- B2 - 54 soit 21% de nombres premiersp parmi les 256 entiers n compris entre 0 et 255, à comparer à:
18 soit 7% de nombres premiers de Sophie Germain «G» parmi les 256 entiers n compris entre 0 et 255[n 3].
11 soit 4,3% de nombres premiers sûrs S dilués parmi les 256 entiers n compris entre 0 et 255.
Les nombres premiers de Sophie Germain G compris entre 2 et 1 023 sont présentés dans le tableau 2 ci-dessous. À partir de 1 031, les nombres premiers ordinaires p intermédiaires ne sont plus indiqués.
Davantage d’informations centaines d'entiers n, premier cent ...
Tableau 2: Tous les nombres premiers p compris entre 0 et 1023, dont les premiers de Sophie Germain G; leurs premiers sûrs résultants S = 2G + 1.
- A1 - 168 soit 16,8% de nombres premiersp parmi les 1 000 entiers n compris entre 0 et 999, à comparer à:
37 soit 3,70% de nombres premiers de Sophie Germain G parmi les 1 000 entiers n compris entre 0 et 999.
25 soit 2,50% de nombres premiers sûrs S parmi les 1000 entiers n compris entre 0 et 999.
- A2 - 303 soit 15,2% de nombres premiersp parmi les 2 000 entiers n compris entre 0 et 1 999, à comparer à:
? soit?% de nombres premiers de Sophie Germain G parmi les 2 000 entiers n compris entre 0 et 1 999.
37 soit 1,85% de nombres premiers sûrs S dilués parmi les 2 000 entiers n compris entre 0 et 1 999.
Totaux et ratios B
- B1 - 172 soit 16,8% de nombres premiersp parmi les 1 024 entiers n compris entre 0 et 1 023, à comparer à:
39 soit 3,81% de nombres premiers de Sophie Germain G parmi les 1024 entiers n compris entre 0 et 1023.
26 soit 2,54% de nombres premiers sûrs S parmi les 1024 entiers n compris entre 0 et 1 023.
- B2 - 309 soit 15,1% de nombres premiersp parmi les 2 048 entiers n compris entre 0 et 2 047, à comparer à:
? soit?% de nombres premiers de Sophie Germain G parmi les 2 048 entiers n compris entre 0 et 2 047.
39 soit 1,90% de nombres premiers sûrs S dilués parmi les 2 048 entiers n compris entre 0 et 2 047.
Fermer
Remove ads
Quantité de nombres premiers de Sophie Germain
Une estimation heuristique pour la quantité de nombres premiers de Sophie Germain inférieurs à n est[1] 2C2n/(lnn)² où C2 est la constante des nombres premiers jumeaux, approximativement égale à 0,660161. Pour n=104, cette estimation prédit 156 nombres premiers de Sophie Germain, qui est de 20% d'erreur comparé à la valeur exacte de 190. Pour n=107, l'estimation prédit 50 822, qui est d'un écart de 10% par rapport à la valeur exacte de 56 032.
Une suite {p, 2p+1, 2(2p+1)+1, ...} de nombres premiers de Sophie Germain est appelée une chaîne de Cunningham de première espèce. Chaque terme d'une telle suite, à l'exception du premier et du dernier, est à la fois un nombre premier de Sophie Germain et un nombre premier sûr. Le premier est un nombre de Sophie Germain, le dernier un nombre premier sûr.
Exemple d'application
Cette section est vide, insuffisamment détaillée ou incomplète. Votre aide est la bienvenue! Comment faire?
Soit un nombre premier de la forme . Alors est un nombre premier de Sophie Germain si et seulement si le nombre de Mersenne est un nombre composé dont est un diviseur[2]. Ce théorème dû à Euler[2] peut être utilisé comme test de primalité[2]; par exemple 83 est premier (et 83 = 4 × 20 + 3) de même que 167 = 2 × 83 + 1. Par conséquent est divisible par 167 et n'est donc pas premier.