Diagrama de Venn

representación para a teoría de conxuntos From Wikipedia, the free encyclopedia

Diagrama de Venn
Remove ads

Os diagramas de Venn son esquemas usados na teoría de conxuntos, teoría usada en matemáticas, lóxica de clases, lóxica matemática e outras disciplinas. Estes diagramas mostran coleccións (conxuntos) de cousas (elementos) por medio circunferencias e un rectángulo global representando o conxunto universal U.

Thumb
Diagramas de Venn que corresponden respectivamente ás relacións topolóxicas de unión, inclusión e disxunción entre dous conxuntos
Remove ads

Introdución

Na teoría de conxuntos cos diagramas de Venn é posíbel representar as relacións de intersección, inclusión e disxunción sen mudar a posición relativa dos conxuntos.

Tamén son usados como representación visual das conectivas lóxicas na lóxica matemática.

Intersección

Os elementos do conxunto que pertencen simultaneamente a ambos os conxuntos forman a intersección do conxunto.[1] No diagrama de Venn será a zona delimitada polo cruzamento das dúas circunferencias.

A = {1; 2; 3; 4; 6; 12}
B = {1; 3; 5; 15}
U = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16}
Thumb

Intersección = 1, 3.

Inclusión

Se todos os elementos dun conxunto son parte dos elementos doutro, dise que o primeiro é un subconjunto do segundo ou que está incluído no segundo.[1]

A = {1; 2; 3; 4; 6; 12}
B = {1; 2; 3; 6}
U = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12}
Thumb

Disxunción

Cando os conxuntos non teñen elementos comúns, a rexión de superposición fica baleira.

A = {2; 4; 6; 8}
B = {1; 3; 5; 7; 9}
U = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10}
Thumb
Remove ads

Orixes e historia

Thumb
Vitral do comedor do Caius College (Cambridge) en homenaxe a John Venn e a súa creación

Os diagramas de Venn teñen o nome do seu creador, John Venn, matemático e filósofo británico.[2] Estudante e máis tarde profesor do Caius College da Universidade de Cambridge, Venn desenvolveu toda a súa produción intelectual nese ámbito.[3]

Foi o matemático suízo Leonhard Euler quen primeiro introduciu unha notación clara e sinxela similar aos diagramas de Venn.[4] O seguinte diagrama mostra doutro xeito a relación de inclusión do exemplo dado na introdución.

Thumb
diagrama de Euler

Os diagramas de Euler distínguense dos de Venn en dous aspectos:

  • Neles non aparecen as rexións baleiras
  • O conxunto universal non se representa.

A primeira constancia escrita do uso da expresión «diagrama de Venn» é moi tardía (1918) e atópase no libro A Survey of Symbolic Logic de Clarence Irving Lewis.[5]

Remove ads

Diagramas de Venn de enunciados

Artigo principal: Conectiva lóxica.

Podemos ter dous tipos de diagramas de Venn: os que mostran elementos e os que simplemente mostran enunciados ou conceptos. Estes últimos son máis interesantes porque permiten operar de maneira abstracta e chegar a conclusións máis xerais.[6]

Os seguintes diagramas do segundo tipo mostran os resultados de catro operacións básicas con conxuntos usando o código do semáforo de dúas cores.[7]

Thumb Thumb Thumb Thumb
¬A AB AB = ¬((¬A) ∧ (¬B)) A – B = A ∧ (¬B)

Que representan as operacións: negación, conxunción, disxunción e diferenza. En verde están o resultado das operacións.

E a continuación unha lista completa para un e dous predicados:

Máis información ...

Outras representacións

Diagramas de Euler

Artigo principal: Diagrama de Euler.

Os diagramas de Euler preceden historicamente aos diagramas de Venn e nalgunhas aplicacións son aínda usados.

A diferenza entre os diagramas de Euler e de Venn obsérvase sobre todo nas relacións de inclusión e de disxunción.

  inclusión disxunción
Euler Thumb Thumb
Venn Thumb Thumb

Mapas de Karnaugh

Artigo principal: Mapa de Karnaugh.

Os mapas de Karnaugh ou diagramas de Veitch son unha representación visual de expresións da álxebra de Boole.[8]

Thumb
Diagram a mostrar dous mapas de Karnaugh.
Remove ads

Notas

Véxase tamén

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads