Differenciálszámítás

From Wikipedia, the free encyclopedia

Differenciálszámítás
Remove ads

A differenciálszámítás (amelyet a némileg eltérő jelentésű deriválás kifejezéssel is illetnek) a matematikai analízis egyik legfontosabb módszere. Azt vizsgálja, hogy a (valós vagy komplex értékű) függvények hogyan változnak néhány (esetleg az összes, de legalább egy) független változó változására. Ennek jellemzésére a differenciálszámítás elsődleges fontosságú fogalma, a derivált szolgál.

Thumb
Egyváltozós függvényrajz (feketével), és ennek érintője (vörössel) a piros körrel jelzett pontban. Az érintő meredeksége megegyezik az adott pontban számított deriválttal. A képen az érintő lejt, így az itteni derivált egy negatív szám

Egyváltozós valós-valós függvénynél (valós számokhoz valós számokat rendelünk, síkban többnyire ábrázolható) a pontbéli derivált egyenlő az adott pontban húzott érintő meredekségével (kivétel ez alól az inflexiós pont). Általánosságban egy függvény deriváltja megmutatja az adott függvény tárgyalt pontjában való legjobb lineáris közelítését.

A derivált megkeresésének folyamatát nevezik differenciálásnak. Bizonyítható, hogy a differenciálás az integrálás inverz művelete.

A differenciálszámítást a természettudományok túlnyomó részében használják. Például a fizikában egy testre vonatkozó helyvektor időfüggvényének idő szerinti első deriváltja a sebesség. Newton második mozgási törvénye értelmében egy adott testre ható erővektorok algebrai összegének időfüggvénye egyenlő a testre vonatkozó impulzusvektor időfüggvényének idő szerinti első deriváltjával. A kémiában a reakciósebességeket, az operációkutatásban a gazdaságosságokat, a játékelméletben megfelelő stratégiákat lehet meghatározni vele stb.

A deriváltakat gyakran függvények extrémumainak meghatározására is alkalmazzák. Függvényegyenletek is tartalmazhatnak deriváltakat, ezeket differenciálegyenleteknek nevezik. Sok jelenséget le lehet írni a differenciálszámítás alkalmazásával, általában azokat, melyek folytonos mozgással vagy változásokkal modellezhetőek.

A deriválási tételek, szabályok, tulajdonságok és ezek általánosításai megjelennek még a komplex analízisben, a függvényanalízisben, a differenciálgeometriában, az absztrakt algebrában is, illetve mind az elméleti, mind az alkalmazott természettudományok további területein.

Remove ads

A derivált

  • Az alábbiakban csakis kizárólag egyváltozós, valós explicit függvények differenciálásával fogunk foglalkozni.

Legyen x és y valós szám, és y legyen x függvénye, tehát y = f(x). Az egyik legegyszerűbb függvény a lineáris függvény. Ennek képe egy egyenes. Ekkor y = f(x) = m x + c, ahol m és c valós számok. Itt m határozza meg f(x) meredekségét, c pedig azt, hogy f(x) hol metszi az y tengelyt (leggyakrabban ezt vertikális tengelyként ábrázoljuk). Könnyen belátható, hogy . A Δ a görög delta betű, jelentése itt: "változás". Mivel y + Δy = f(x+ Δx) = m (x + Δx) + c = m x + c + m Δx = y + mΔx, ebből következik, hogy Δy = m Δx.

Bár ez csak lineáris függvényekre igaz, folytonos f függvényt közelíthetünk lineáris függvénnyel.

Elemi függvények deriváltjai

Tételezzük fel, hogy f(x) függvény az értelmezési tartomány egészén folytonos, tehát nincs szakadása, továbbá differenciálható.

További információk , ...

Inverz- és egyéb további függvények deriváltjairól a Derivált szócikkben olvashatsz.

Differenciálási szabályok

Vannak olyan összetett függvények, melyek nem lettek külön megemlítve az elemi függvények deriváltfüggvényei között. Ezek például a két függvény hányadosából előállított függvények. Összetett függvények differenciálásához szükségesek a következő szabályok:

miszerint, két függvény összegének deriváltján az egyik függvény deriváltjának, valamint a másik függvény deriváltjának összegét értjük.

tehát, bármely függvény "szorzó-konstansa" kivihető a deriváltjel alól (melyek az integrálási azonosságokhoz hasonlóan adódnak).

vagyis, azt mondhatjuk, hogy két függvény szorzatának deriváltja az egyik függvény deriváltjának és a másik függvény szorzatának, valamint az egyik függvény és a másik függvény deriváltjának szorzatának összegével egyenlő.

avagy, két függvény hányadosának deriváltján (a két függvény szorzatának deriváltjából kiindulva) az egyik függvény deriváltjának és a másik függvény szorzatának, valamint az egyik függvény és a másik függvény deriváltjának szorzatának különbségének és a második függvény négyzetének hányadosával egyenlő.

  • (láncszabály)

azaz, két függvény kompozíciójának deriváltja az első függvény deriváltjának a második függvény értékén, és a második függvény deriváltjának szorzatával egyenlő.

Remove ads

A differenciálszámítás gyakorlati alkalmazása

Analízis

Legyen adott az harmadfokú függvény. Elemezzük ezt a függvényt az alábbi szempontok alapján:

  • Függvénytípus meghatározása (a függvénycsalád definiálása)
  • Értelmezési tartomány
  • Értékkészlet
  • Zérushely(ek)
  • Határérték
  • Szélsőértékek (extrémumok)
  • Monotonitás
  • Inflexiós pont(ok)
  • Konvexitás
  • Sajátos függvényvonások: paritás (és szimmetria), aszimptoták.

Függvénytípus:

Egyváltozós explicit, algebrai és harmadfokú függvény.

Értelmezési tartomány:

Értékkészlet:

Zérushely(ek):

A zérushelyek megállapításához meg kell oldanunk a következő harmadfokú egyenletet:

(kiemeltünk 'x'-et)

Ebből a megoldások: és

Határérték(ek):

(tehát a függvénynek az értelmezési tartomány egészén nincs határértéke /az intervallumon/.)

Extrémumok (lokális szélsőértékek):

Bármely függvény (lehetséges!) szélsőértékeinek helyét a függvény első deriváltjának zérushelye(i) adja:

Hogy melyik x lesz a minimum és maximum hely, azt az f(x)-be történő behelyettesítés után kapott érték után tudjuk egyértelműen eldönteni (a kapott x-eket helyettesítsük be f(x)-be!):

Tehát:

Így: .

Ha az első derivált 0, még mindig elképzelhető, hogy a függvénynek azon a helyen nincs sem lokális minimuna, sem lokális maximuma, például a függvény deriváltja a 0 helyen: , pedig nincs szélsőérték.

Monotonitás:

A monotonitás meghatározásához többféle kalkulus módszert és/vagy tételt alkalmazhatunk, mi azonban használjuk fel azt, hogy az extrémumok meghatározása után vagyunk és tudunk következtetést mondani a függvény egyszerűsége miatt a függvény monotonitására. A páratlan kitevős algebrai függvény grafikonja és a lokális szélsőértékek miatt:

f(x) függvény extrémumai (x):

és , tehát tekintsük ezen pontok halmazait monotonitás szempontjából:

  • Az f(x) függvény szigorúan monoton növekvő az intervallumon
  • Az f(x) függvény szigorúan monoton csökkenő ugyanezen valós számhalmaz komplementerén, azaz:

Inflexiós pontok (konvexitás határok):

Bármely függvény inflexiós pontja(i)nak helyét a függvény második deriváltjának zérushelye(i) adja meg:

Az inflexiós pont (IP) koordinátái: .

Figyeljünk arra, hogy inflexiós pont sem mindig létezik, csak ha , tehát a harmadik deriváltnak zérustól különbözőnek kell lennie. Vannak azonban olyan esetek, amikor ennek ellenére mégis van zérushelye a függvénynek (pl. az , mivel e függvény inflexiós pontja: ).

Konvexitás:

Az inflexiós pontnak és a függvény grafikonjának megsejtésének köszönhetően megmondhatjuk, hogy a függvény hol konvex, illetve konkáv:

  • Az f(x) függvény konvex az x ∈ ]-∞ ; -16/6 [ intervallum egészén;
  • Az f(x) függvény konkáv az x ∈ ]-16/6 ; +∞ [ intervallum egészén.

Koordinátageometria

Lineáris közelítés:

Legyen adott f függvény. Ekkor f-nek az x0 abszcisszájú pontjába húzható érintőjének egyenlete: y = f(x0)+f'(x0)(x-x0). Tekintsük az f(x)=x² algebrai polinom függvényt, valamint x0=4 pontját. Ekkor f-nek az x0 abszcisszájú pontjába húzható érintő egyenes egyenlete esetünkben: y = 16 + 8(x-4), azaz: 8x - y = 16. Megj.: minden lineáris és konstans függvény érintője önmaga (∀x∈R-ben)

Simulókör egyenlete:

Ívdifferenciál kiszámítása:

A függvények differenciáljának definícióját felhasználva: r = √1+y'².

Differenciálegyenletek

Differenciálegyenletek megoldása és megoldhatósága, nevezetes és közönséges differenciálegyenletek és problémák.

Egyéb analitikus területek

Középérték tétel:

Legyen adott az f függvény, amelyre teljesül, hogy folytonos az [a, b] intervallumon, valamint differenciálható az ]a, b[ intervallumon. Ekkor ∃c∈]a, b[, hogy azt mondhatjuk: [f(b)-f(a)]:(b-a) = f'(c).

Függvények közelítő értéke:

Legyen adott f függvény, melynek x0 helyen vett helyettesítési értékét nem, vagy csak feltételesen, illetve legtöbbször csak hosszú munkával tudnánk kiszámítani. Ekkor az f(x0+t) helyettesítési értéket a differenciálszámítás tulajdonságát kihasználva felbontással úgy kapjuk, hogy: f(x0+t) = f(x0)+f'(x0)t (feltéve, hogy t minimális). Számítsuk ki f=√1000 értékét! Nyilvánvaló, hogy 1024-et könnyen meg tudjuk mondani kettő egész kitevős hatványaként: 210, mely 1000-hez kellően közeli környezetében van. Ekkor a képletet felhasználva: f(1024-24)=32+(1/2·32)·(-24) ≈ 31,62.

Remove ads

Források

  • Thomas, George B., Maurice D. Weir, Joel Hass, Frank R. Giordano. 3-4., Thomas-féle Kalkulus I., 2. kiadás (magyar nyelven), Typotex: Budapest (2006). ISBN 978 963 2790 114

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads