Top Qs
Timeline
Obrolan
Perspektif
Faktor persekutuan terbesar
Dari Wikipedia, ensiklopedia bebas
Remove ads
Dalam matematika, faktor persekutuan terbesar (FPB) dari dua bilangan bulat adalah bilangan bulat terbesar yang sama-sama membagi habis kedua bilangan bulat tersebut. Sebagai contoh, faktor persekutuan terbesar 24 dan 60 adalah 12.

Dua bilangan atau lebih disebut saling prima jika FPB bilangan-bilangan tersebut sama dengan 1. Sebagai contoh, karena FPB bilangan 9 dan 28 sama dengan 1, maka bilangan 9 dan 28 adalah saling prima (walaupun masing-masingnya bukan bilangan prima)
Faktor persekutuan terbesar (FPB) dan sekawannya, kelipatan persekutuan terkecil (KPK), menjadi pembahasan yang penting dalam aritmetika dan teori bilangan.
Remove ads
Definisi
Suatu bilangan disebut faktor persekutuan bilangan dan jika habis membagi bilangan dan sekaligus.
Suatu bilangan disebut faktor persekutuan terbesar bilangan jika:[1]
- faktor persekutuan bilangan dan ; dan
- jika faktor persekutuan bilangan dan maka berlaku
bilangan ditulis sebagai [2] atau .[1]
Peristilahan
Secara bahasa, kata "persekutuan" berarti hal bersama-sama dan kata "faktor" berarti 'pembagi'. Maka dari itu, sebagian penulis menggunakan istilah lain untuk FPB, seperti pembagi persekutuan terbesar,[3] atau pembagi bersama terbesar,[4] dilambangkan dengan . Dalam penulisan matematika kadang dipakai juga notasi , berasal dari bahasa Inggris greatest common divisor.[5]
Remove ads
Contoh
- Faktor dari adalah
- Faktor dari adalah
Faktor persekutuan 12 dan 20 adalah 1, 2, 4. Karena 4 adalah bilangan terbesar di antara faktor persekutuan itu, maka disimpulkan .
Remove ads
Perhitungan FPB
Ringkasan
Perspektif
Faktorisasi prima
FPB dari beberapa bilangan dapat ditentukan dengan mencari faktorisasi prima bilangan-bilangan itu kemudian mengalikan faktor-faktor primanya yang sama dengan pangkat terkecil. Sebagai contoh, akan ditentukan FPB dari 24 dan 60. Dengan pohon faktor
diperoleh dan . Dengan mengambil faktor prima yang sama dengan pangkat maka, .
Algoritma Euklides
Euclid menemukan sebuah algoritma untuk mencari FPB. Misalkan dan adalah 2 bilangan bulat yang tidak sama, maka FPB dua bilangan itu dapat dicari dengan algorirma sebagai berikut:
1. masukkan nilai a dan b; 2. misalkan u:=a dan v:=b; 3. selama u ≠ v, ulangi u = maximum (u,v) - minimum (u,v) v = minimum (u,v); 4. FPB(a,b)=u;
Sifat
Untuk sebarang bilangan bulat , dengan adalah nilai multak dari , berlaku:
- Sifat komutatif, yaitu .
- Sifat asosiatif, yaitu .
- Sifat distributif, yaitu
- Jika faktor persekutuan dan , maka , dan , sehingga jika maka
- Untuk sebarang bilangan bulat positif , jika dan hanya jika habis membagi .
Remove ads
Koprima
Dua buah bilangan dikatakan koprima, atau relatif prima, atau saling prima jika dan hanya jika faktor persekutuan terbesar dari kedua bilangan tersebut bernilai 1.[6]
Penerapan
Menyederhanakan pecahan
Salah satu penerapan terhadap faktor persekutuan terbesar adalah menyederhanakan pecahan.[7] Sebagai contoh, pecahan dapat disederhanakan dengan menggunakan faktor persekutuan terbesar. Faktor persekutuan terbesar dari dan adalah . Kita tuliskan sebagai
- .
Kelipatan persekutuan terkecil
Selain digunakan untuk menyederhanakan sebuah pecahan, faktor persekutuan terbesar juga dapat diterapkan dalam kelipatan persekutuan terkecil, di mana hubungan keduanya berkaitan dengan rumus berikut.
.[8]
Remove ads
Lihat pula
Rujukan
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads