Timeline
Chat
Prospettiva

Solido di Catalan

poliedro duale di un solido archimedeo Da Wikipedia, l'enciclopedia libera

Solido di Catalan
Remove ads

In geometria un solido di Catalan, o solido archimedeo duale è un poliedro duale di un solido archimedeo. I solidi di Catalan prendono il loro nome dal matematico belga Eugène Charles Catalan che per primo li ha descritti nel 1865.

Thumb
Il dodecaedro rombico è uno dei 13 solidi di Catalan.

Proprietà

Facce uniformi

Tutti i solidi di Catalan sono convessi. Poiché i solidi archimedei hanno vertici uniformi, e la dualità scambia i ruoli di vertici e facce, quelli di Catalan hanno facce uniformi: per ogni coppia di facce, esiste una simmetria del solido che sposta la prima nella seconda. D'altra parte, come i solidi archimedei non sono uniformi sulle facce, quelli di Catalan non lo sono sui vertici: esistono infatti vertici aventi valenze differenti.

Contrariamente alle facce dei solidi platonici e dei solidi archimedei, le facce dei solidi di Catalan non sono poligoni regolari. Tuttavia le cuspidi ai vertici sono regolari e presentano angoli diedri uguali. Inoltre due dei solidi di Catalan, il dodecaedro rombico e il triacontaedro rombico, sono uniformi sugli spigoli.

Chiralità

Come per i duali solidi archimedei, vi sono due coppie chirali di solidi di Catalan: una riguarda l'icositetraedro pentagonale e l'esacontaedro pentagonale. Sono solidi che non sono equivalenti alla loro immagine riflessa. Come per l'ipersfera di Poincaré il solido di Catalan potrebbe avere degli impieghi nella trasformazione della curvatura dello spazio-tempo su più dimensioni.

Remove ads

I solidi

Riepilogo
Prospettiva

Nella tabella, il gruppo di simmetria Oh, Ih e Td è rispettivamente il gruppo di simmetria dell'ottaedro, icosaedro e tetraedro. I gruppi O ed I sono i sottogruppi rispettivamente di Oh e Ih formati dalle simmetrie che preservano l'orientazione.

Remove ads

Altri progetti

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di Matematica
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads