トップQs
タイムライン
チャット
視点

合同二等辺化線点

ウィキペディアから

Remove ads

幾何学において、合同二等辺化線点(ごうどうにとうへんかせんてん[1]:congruent isoscelizers point)は、三角形の中心の一つである[2]Encyclopedia of Triangle Centersでは X(173)として登録されている。1989年、ピーター・イフ三角形幾何学ドイツ語版の研究で発見された[3][4]

定義

要約
視点
Thumb

ABCについて、AP1Q1二等辺三角形となるような線P1Q1A二等辺化線( isoscelizer)という[5]。ただし、P1,Q1はそれぞれAB,AC上にあるとする。また二等辺化線は角の二等分線垂線である。

ABCについて、A, B, Cの二等辺化線をそれぞれ P1Q1, P2Q2, P3Q3とする。このとき線分P1Q1, P2Q2, P3Q3が同じ長さかつP1Q1, P2Q2, P3Q3一点で交わるようにすることができる。この点を合同二等辺化線点という[3]

Remove ads

性質

Thumb
  基準三角形 ABC
  ABCの合同二等辺化線
  ABC内接円
  A'B'C' の内接円 (A'B'C' の接触三角形A"B"C")
  ABCA"B"C"配景の線
  • ABCの合同二等辺化線点の三線座標は以下の式で与えられる[3]

Remove ads

等角共役点

合同二等辺化線点の等角共役点合同内接円二等辺化線点[1]Congurent incircles isocelizers point)である。定義は次の通り。

ABCについて、点Pを通る、それぞれA, B, Cの二等辺化線と2辺が成す三角形の内接円がすべて合同であるような点Pを合同内接円二等辺化線点という。

合同内接円二等辺化線点は、内心傍心三角形の内心と共線である。

Encyclopedia of Triangle CentersではX(258)で紹介されており、三線座標は次の式で与えられる[7]

関連

出典

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads