ポテンシャル形式のマックスウェルの方程式から、遅延ポテンシャルのうち、
特に磁気ベクトルポテンシャルについてを導出する。導出の戦略は下記の通りである。
- STEP1:ポテンシャル形式のマックスウェル方程式のフーリエ変換
- STEP2:グリーン関数が従う方程式を導出する。
- STEP3:Step2で得られた方程式の空間成分に球面座標変換を施し、等方性(球称性)を考慮する。
- STEP4:グリーン関数を求める。
- STEP5:解のフーリエ逆変換2
- STEP6:解のフーリエ逆変換2
- STEP7:時空因果律に反する解を棄却する。
電位スカラーポテンシャルも同様に導出されるが、これについては、
上記戦略にて同様に導出される[注釈 2]ので、省略する。
本節の議論は、オッペンハイマー[1](特に7章p33以降)川村[2](p151~),砂川[3](特にP254付近)と概ね[注釈 2]同等である。
従って、本筋の部分については、個々の補助定理や個々の結論にいちいち文献指示をつけない。
本記事は、現代工学との整合性に留意し、E-B対応、国際単位系で議論しているが、上記文献の中には別の立場に立っているものもある。しかし単位の換算程度の問題については、特段断わりをいれない。数学的な扱い等に特に留意を要する個所については重要性、難易度に応じ、文献指示、脚注、付録をつけることにする。
STEP1
本節では、ポテンシャル形式のマックスウェル方程式の両辺の、A, iそれぞれの、時間成分に対し、
それぞれ、(一変数の意味で)フーリエ変換[注釈 3]を施す。本節の結論は、以下の補題1に集約される。
補題 1 (ポテンシャル形式のマックスウェル方程式のフーリエ変換)
4変数(t,x,y,z)を持つR3値関数A (t,x,y,z), i (t,x,y,z)が、
ポテンシャル形式のマックスウェル方程式の磁場成分、即ち以下の式(2-1-1) の解とする。
(2-1-1)
このとき、4変数(x,y,z,ω)を持つR3値関数
を、それぞれ
(2-1-2)
とすると、任意の実数ωに対し、以下の式(2-1-3)が成り立つ。
(2-1-3)
但し、Dは、以下の式(2-1-4)で定まる x-y-z空間上の微分作用素である。
(2-1-4)
式(2-1-2)の
は、
の時間成分に
一変数関数の意味でフーリエ変換を施して得られたものである。
[注釈 3]
[注釈 4][注釈 5]
従って、当然、
それぞれに(一変数の意味でωについて)フーリエ逆変換を施すと、
(2-1-5a)
(2-1-5b)
を得る。式(2-1-5)を、 式(2-1-1)に代入することで、(ダランベールシアンから)時間成分を消去することを考える
まず、式(2-1-1) の左辺について検討する。
式(2-1-5a)の両辺に、式(2-1-1) の左辺、即ちダランベールシアン
(2-1-6)
を作用させると、
(2-1-7)
を得る。実際、
(2-1-8)
である。
一方、式(2-1-1)右辺を、 (2-1-5b) の電流密度”i”に作用させると、
(2-1-9)
を得る。
式(2-1-1),(2-1-7),(2-1-9) より、
(2-1-11)
が判る。以上から、ヘルムホルツ方程式 、即ち、式(2-1-3)が、任意の実数ωに対して成り立つことが判る。
STEP2
一般にヘルムホルツ方程式は、式(2-2-1)
[注釈 6]
のようなインパルス応答を用いて解くことができる。
このことを示そう。インパルス応答を用いてヘルムホルツ方程式を解くことを、グリーン関数法といい、
以下の式(2-2-1)の、スカラー値関数の解G
[注釈 7]のことを、ヘルムホルツ方程式(2-1-3)のグリーン関数という。グリーン関数を用いた微分方程式の解法については、例えばに詳しい。本節の主結果は以下の補題2に集約される。
補題 2 (グリーン関数法)
式 (2-1-3) のヘルムホルツ方程式の、インパルス応答、即ち
(2-2-1)
式(2-2-1)のスカラー値関数解をGとしたとき、
(2-2-2)
は、式 (2-1-3)のヘルムホルツ方程式の解である。
実際、(2-2-2)の両辺に
を作用させると、「積分と微分の交換可能性」と、「ライプニッツルール」より、
(2-2-3)
である。ここで、
- r=(x,y,z) (2-2-4)
である。
まず、式(2-2-3)の第一項について検討する。
- DG(r-s,ω) = δ3(r-s) (2-2-5)
であり、さらに、デルタ関数とのコンボリューションの性質から、
(2-2-6)
である。次にの第一項について検討する。
は、
に依存していないので、
(2-2-7)
である。
以上から、式(2-2-2)の、
は、
(2-2-8)
を充す。即ち、式 (2-1-3)のヘルムホルツ方程式を満たすことが判る。
STEP3
本節では、前節のインパルス応答の式(式(2-2-1))に、球面座標変換を施し、さらに、空間の球対称性を考慮することで、式(2-2-1)を常微分方程式に帰着する。
本節では、ラプラシアンの球面座標変換は既知の事実としているため、実際に
やっていることは、本記事微分作用素の球面座標変換の式(S3-2-1) の意味での”Φ関係”を適用したに過ぎないのだが
抽象的な座標変換では、途端に議論の道筋が見えにくくなることが多いため、本記事では、本過程を敢えて一つのステップに切り出すこととした。微分作用素の座標変換の例は例えば、
[25]
[28]
[29]
[30]
[31]
[32]
等の文献を参照のこと
本節の主結果は、以下の補題3に纏められる。
補題 3 (ヘルムホルツ方程式のインパルス応答の球面座標変換)
x-y-z空間上のスカラー値関数G(x,y,z)が、式(2-2-1)の球対称解である必要充分条件は、
G(x,y,z)が、以下の式(2-3-1)を充すことである。
(2-3-1)
但し、kは、以下の式(2-3-2)で定まる定数とする。
(2-3-2)
ラプラシアン(
)に対し、球面座標変換を
施したものを、
と書くと、
(2-3-3)
となる。従って、式(2-1-4)のDに対して球面座標変換を施したものを、Lと書くと、
(2-3-4)
である。上記の微分作用素Lは、
に対し、付録微分作用素の球面座標変換の式(S3-2-1) の意味での
関係、即ち、
(2-3-5)
を充たすように作用するため、上記のヘルムホルツ方程式は、
(2-3-6)
と変形される。
一方、位置
における電流素片の影響は球対称、すなわち試験電荷(試験電流)の位置
と、電流素片との距離
のみに依存するため、Gの、θ方向、
方向の偏微分は、いずれも0であらねばならない。従って、
(2-3-7)
が成り立つ。
さらに、積の微分の公式を考慮すると[28]、
(2-3-8)
が得られる。ここで、”
”は、スカラー倍を意味する。即ち、
は、
スカラーrによるベクトルAのスカラー倍を意味する。
従って、球対称性を考慮した場合、
(2-3-9)
が得られる。
STEP4
前節で導出した、式(2-3-3)の常微分方程式を解く。
補題 4 (球対称グリーン関数)
x-y-z空間上のスカラー値関数
が、式(2-3-1)の解となる必要充分条件は、
が、以下の式(2-4-2)の形で表されることである。
(2-4-2)
但しa,bは、
(2-4-3)
を充す実定数であり、Gadv,Gretは、以下の式(2-4-4)、(2-4-5)[注釈 6]
で定まる関数である。
(2-4-4)
(2-4-5)
また、kは、式(2-3-4)で与えられ、rは、式(2-4-6)に定めるとおりである。
(2-4-6)
(1)常微分方程式の部
まず、r≠0で式(2-3-1)を解く
(2-4-7)
と置き、(2-3-1)式に代入すると、r≠0において、
(2-4-8)
が得られる。この常微分方程式は、変数分離型なので、定数(スカラー)a,bを用いて、
(2-4-9)
と表される。
の定義より、
(2-4-10)
であるが、さらに、Gは、球対称性を持つため、θ,ρに依存せず、従って、任意のr,θ,ρ,ωに対して、
(2-4-11)
が、r≠0において、球対称性を考慮したヘルムホルツ方程式の解だと判る。
(2)グリン関数の部
次に、式(2-4-11)が、r=0において、式(2-3-3)の解となるような条件が、式(2-4-3)で与えられることを示す。
まず、
について考える。
Gadvの両辺にラプラシアンを作用させることを考える。
![{\displaystyle {\frac {\partial [{G}_{\mathrm {adv} }]}{\partial x}}={\frac {-1}{4\pi r}}\left({\frac {\partial [\exp(ikr)]}{\partial x}}\right)+\exp(ikr){\frac {\partial }{\partial x}}\left[{\frac {-1}{4\pi r}}\right]}](//wikimedia.org/api/rest_v1/media/math/render/svg/c723cdbc077b9f041b2d83fb5e3c623791ddc522)
(2-4-12)
従って、
![{\displaystyle {\frac {{\partial }^{2}{G}_{\mathrm {adv} }}{{\partial }^{2}x}}={\frac {\partial }{\partial x}}\left[{\frac {-ikx\exp(ikr)}{4\pi {r}^{2}}}\right]+{\frac {\partial }{\partial x}}\left[\exp(ikr){\frac {\partial }{\partial x}}\left[{\frac {1}{-4\pi r}}\right]\right]}](//wikimedia.org/api/rest_v1/media/math/render/svg/5fbbb7f793535b8cf3318d724f0067510f997063)
![{\displaystyle ={\frac {-{i}^{2}{k}^{2}{x}^{2}\exp(ikr)}{4\pi {r}^{3}}}+{\frac {ik\exp(ikr)}{4\pi {r}^{2}}}+{\frac {-ik{x}^{2}\exp(ikr)}{-4\pi {r}^{3}}}+{\frac {2ik{x}^{2}\exp(ikr)}{-4\pi {r}^{4}}}+\exp(ikr){\frac {{\partial }^{2}}{\partial {x}^{2}}}\left[{\frac {-1}{4\pi r}}\right]}](//wikimedia.org/api/rest_v1/media/math/render/svg/5c413ddd577adbf41c5648413dbcc3be96010f21)
(2-4-13)
同様に、
(2-4-14)
(2-4-15)
以上から、
![{\displaystyle \Delta [{G}_{\mathrm {adv} }]={k}^{2}\exp(ikr){\frac {({x}^{2}+{y}^{2}+{z}^{2})}{4\pi {r}^{3}}}+{\frac {1}{4\pi }}\exp(ikr)\Delta [{\frac {1}{r}}]+}](//wikimedia.org/api/rest_v1/media/math/render/svg/3445f535794a7b5187ee1ddd02061e28372f25d9)

(2-4-16)
以上から、
(2-4-17a)
同様に、
(2-4-17b)
となる。
ここで、ティラックのデルタの体積積分(補足参照)より、
(2-4-18)
であり、さらに、
(2-4-19a)
(2-4-19b)
である。従って、式(2-4-2)の左辺にDを作用させると、
(2-4-20a)
(2-4-20b)
(2-4-20c)
であることから、式(2-4-3)の係数条件が満たされれば、式(2-4-2)の
は、
においても、球対称性を考慮したヘルムホルツ方程式の解であることが判った。
充分性については、常微分方程式の解の一意性より自明であろう。
STEP5
補題 5
式(2-4-4),式(2-4-5)の
に対し、
、
を、それぞれ式
式(2-5-1)、式(2-5-2)のように定める。
(2-5-1)
(2-5-2)
、
を、それぞれ式
式(2-5-1)、式(2-5-2)のように定める。さらに、
(2-5-3)
(2-5-4)
このとき、以下の(1),(2)が成り立つ。
- (1)
であれば、以下の式(2-5-5)は、式(2-1-3)のヘルムホルツ方程式の解である。
(2-5-5)
- (2)
であれば、以下の式(2-5-6)は、式(2-1-1)の方程式の解である。
(2-5-6)
(2-5-7)
に、STEP4の式(2-4-2)で得られた
を代入し、一般解を求めることを考える。
式(2-5-7)に、式(2-4-2)で得られた
を代入すると、

(2-5-8)
(2-5-9)
となる。従って、式(2-5-1)、式(2-5-2)のように
を定めると、
(2-5-10)
が判る。即ち、式(2-5-5)が示された。
また、式(2-5-3),式(2-5-4)の定義式の意味する
ところは、
は、
にフーリエ逆変換を施し、時間域に戻したものという意味であるため、
STEP1の式(2-1-3)の逆を辿れば、式(2-5-6)を得る。
STEP6
式(2-6-2)を示す。式(2-5-2)の
に、式(2-4-5)を代入すると、
(2-6-5)
式(2-6-5)の、
にフーリエ逆変換をすると、
(2-6-6a)
(2-6-6b)
(2-6-6c)
(2-6-6d)
(2-6-6e)
を得る。ここで、(2-6-6a) から(2-6-6b)の式変形では、
に依存しない項を”
”の外に括りだしている。
(2-6-6b) から (2-6-6c)の式変形では、 式(2-3-4)、即ち
を考慮した。
また、 (2-6-6d)から、 (2-6-6e)の式変形は、(2-1-5b) に、tretを代入したものである。
STEP7
STEP6で得られた一般解から、ふるまいの悪い解を棄却する。
式(2-6-1) の先進ポテンシャル
の物理学的意味を解釈すると、
位置
の電流素片
(2-7-1)
が、位置
に作り出す
ベクトルポテンシャルが、
(2-7-2)
であり、これを全
にわたって積分したものが、位置で
におけるベクトルポテンシャルで
あると解されよう。
同様に、式(2-6-2)の遅延ポテンシャル
(2-7-3)
が、位置rに作り出す
ベクトルポテンシャルが、
(2-7-4)
であり、これを全sにわたって積分したものが、位置でrにおけるベクトルポテンシャルで
あると解されよう。
式(2-7-2),式(2-7-4)いずれの場合にも電流素片の影響が、電流素片の置かれた場所s
と、位置(観測点sとの間の距離に逆比例して球対称に広がっていることが判り、非常にもっともらしい。
遅延ポテンシャルにおいては式(2-7-4)のように、観測点の、時刻tにおけるベクトルポテンシャルに
影響を与える電流素片が、観測点の時刻よりも前の時刻のものであるしかも、影響が光速で伝播するとしたときに非常につじつまの合う時間遅れが生じていてさらにもっともらしい。
一方で、式(2-7-2)では、観測点の、時刻tにおけるベクトルポテンシャルに
影響を与える電流素片が、観測点の時刻よりも後(未来)の時刻のものである
ことになり、非常に振る舞いが悪い。
大げさに言えば、先進ポテンシャルの影響があるとすると、
観測点rの観測者は、
未来の情報を観測(予測ではなく)出来るということを意味する。
このようなことは、非現実的で、時空因果律の観点からも
おかしい。したがって、先進ポテンシャルは棄却すべきである。
以上から、式(2-6-2) のAretのみが生き残るべきであると結論される。